SIEMENS

VVF47..

VXF47..

VVF42..C, VVF42..KC

VXF42..C

VVF52..KC

VVF53..C

Acvatix™ Valves VVF47..,VXF47..,VVF42..C,VVF42..KC,VXF42..C, VVF52..KC, VVF53..C

Basic documentation

A6V10423210_en--_c 2024-04-19

Smart Infrastructure

Control Products and Systems 1/71

Siemens Smart Infrastructure

Table of contents

1	About this document	4
1.1	Navigation	4
1.2	Revision history	
1.3	Reference documents	4
1.3.1	2- and 3-port valves with flanged connections	4
1.4	Before you start	
1.4.1	Trademarks	5
1.4.2	Copyright	5
1.4.3	Quality assurance	5
1.4.4	Document use / request to the reader	5
1.5	Validity of documentation	6
2	Engineering	7
2.1	Product description	7
2.1.1	2-port valves	
2.1.1	3-port valves	
2.1.2	Type plate	
2.2	Use	
2.2.1	Compatibility with medium and temperature ranges	
2.2.2	Fields of use	
2.3	Type summary and equipment combinations	
2.3.1	2-port valves with flanged connections	
2.3.2	3-port valves with flanged connections	
2.3.3	Overview of actuators	
2.4	Ordering	
2.5	Accessories	
2.6	Product replacement	. 17
2.7	Spare parts	
2.8	Valve sizing for water	
2.8.1	Procedure for valve sizing	. 19
2.8.2	Flow chart	. 20
2.8.3	Impact of fluid properties on valve sizing	. 21
2.8.4	Influencing factors with selected groups of fluids	. 23
2.8.5	Rangeability Sv, minimum controllable output Qmin	
2.9	Calculation examples for water Error! Bookmark not defin	ed.
2.9.1	Example for water: Heater with pressure and variable volumetric flow	
2.9.2	Example for water: Heater with low differential pressure without main put	
2.10	Valve characteristics	
	2-port valves	
	3-port valves	
2.11	Operating pressure and medium temperature	
	ISO 7005 and EN 1092 – a comparison	
	PN 16 valves with flanged connections	
2.12	Cavitation	
2.13	Medium quality and medium treatment	
	Water	
	Deionized, demineralized water and super-clean water	
2.14	Engineering notes	
2.14.1	Strainer (dirt trap)	
	Avoiding flow noise	
2.14.3	Avoiding false circulation	. 42
2.14.4	Thermal insulation	. 43

2.15	Warranty	44
3	Handling	45
3.1 3.1.1	Mounting and installation	
3.1.1	Mounting positions Direction of flow for fluids	
3.1.2	Flanges	
3.1.4	Thermal insulation	
3.2	Commissioning and maintenance	
3.2.1	Commissioning	
3.2.2	Maintenance	
3.3	Disposal	
4	Functions and control	49
4.1	Selection of acting direction and valve characteristic	49
4.2	Calibration	
4.3	Technical and mechanical design	49
4.3.1	Plug stop	50
4.3.2	Valve stem, valve neck, coupling	50
4.3.3	Converting a 2-port to a 3-port valve	
4.3.4	Converting a 3-port to a 2-port valve	
4.3.5	Flange types	51
5	Technical data	52
6	Dimensions	57
7	Revision number	63
8	Addendum	64
8.1	Abbreviations	64
8.2	Important formulas	65
8.3	Valve-related glossary	65
8.4	Hydraulics-related glossary	66
8.5	Media-related glossary	67
8.6	Trade names	
8.7	Overview of antifreeze and brines used in the trade	67

1 About this document

1.1 Navigation

You will find information about a specific valve throughout the document. The structure of chapters 2 to 4 is as follows:

- 2 Engineering
 3 Handling 3.1 Mounting and installation 3.2 Commissioning and maintenance 3.3 Disposal
 4 Functions and control 4.1 Selection of acting direction and valve characteristic 4.2 Calibration
 - 4.3 Technical and mechanical design

1.2 Revision history

Revision	Date	Changes	Section	Page(s)
С	2024-04-19	Added VVF53C relevant info,	-	-
		updated VF47, VF42C relevant info.		
b	2023-04-19	Added VVF52KC relevant info.	-	-

1.3 Reference documents

1.3.1 2- and 3-port valves with flanged connections

Type of document	VVF47 VXF47	VVF42C VVF42KC VXF42C	VVF52KC	VVF53C
Data Sheet	N4419	A6V10794157	A6V14027860	A6V14669668
Mounting Instructions	M4419	A6V10794155	A6V13880003	DN 15150: A5W00739629A DN 200, DN 250: A5W90000815
CE Declaration of Conformity (PED)	T4419	A6V10794200	A5W90001953A	DN 15150: A5W00006523 DN 200, DN 250: A5W90001026
Environmental Declaration	E4419	A6V10794205	A5W00309337A	DN15150: A5W00735647A DN200, DN250: A5W90001031

1.4.1 Trademarks

The table below lists the trademarks used in this document and their legal owners. The use of trademarks is subject to international and domestic provisions of the law.

Tra	ademarks	Legal owner
Ac۱	vatix™	Siemens AG

All product names listed in the table are registered ($^{\mathbb{R}}$) or not registered ($^{\mathbb{T}}$) trademarks of the owner listed in the table. We forgo the labeling (e.g. using the symbols $^{\mathbb{R}}$ and $^{\mathbb{T}}$) of trademarks for the purposes of legibility based on the reference in this section.

1.4.2 Copyright

This document may be duplicated and distributed only with the express permission of Siemens, and may be passed only to authorized persons or companies with the required technical knowledge.

1.4.3 Quality assurance

The document was prepared with great care. Please make sure that you are aware of the latest document revision date.

- The contents of all documents are checked at regular intervals
- Any corrections necessary are included in subsequent versions
- Documents are automatically amended as a consequence of modifications and corrections to the products described

If you find lack of clarity while using this document, or if you have any criticisms or suggestions, please get in touch with your local contact person in the nearest Siemens branch office. For addresses of the Siemens branch offices, please visit <u>www.siemens.com/acvatix</u>.

1.4.4 Document use / request to the reader

Before using our products, it is important that you read the documents supplied with or ordered at the same time as the products (equipment, applications, tools, etc.) carefully and in full.

We assume that persons using our products and documents are authorized and trained appropriately and have the technical knowledge required to use our products as intended.

More information on the products and applications is available:

- On the intranet (Siemens employees only) at <u>https://workspace.sbt.siemens.com/content/00001123/default.aspx</u>
- From the Siemens branch office near you or from your system supplier
- From the Support Team at headquarters (<u>fieldsupport-zug.ch.sbt@siemens.com</u>) if there is no local point of contact

Siemens assumes no liability to the extent allowed under the law for any losses resulting from a failure to comply with the aforementioned points or for improper compliance of the same.

1.5 Validity of documentation

This document shall serve as a knowledge base. In addition to basic knowledge, it provides general technical information about valves used in HVAC plants. For project engineers, electrical HVAC planners, system integrators, and service engineers, the document contains all information required for planning, engineering, correct installation, commissioning, and servicing.

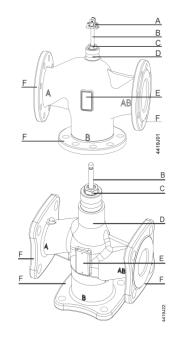
2 Engineering

2.1 Product description

The large-stroke valve line consists of 2-port and 3-port valves.

2.1.1 2-port valves

Type of valve	Product number	Connections
Standard valves	VVF47, VVF42C, VVF42KC VVF52KC, VVF53C	Flanged


				Page
		Α	Valve and actuator coupling	40
VVF47	F A AB	в	Valve stem	40
	F B B	с	Stem sealing gland	40
	G	D	Valve neck	40
	B C	Е	Type plate	7
VVF42C VVF42KC VVF52KC		F	Flange	
VVF52KC VVF53C	F B G	G	Blank flange	46

2.1.2 3-port valves

Type of valve	Product number	Connections
Standard valves	VXF47, VXF42C	Flanged

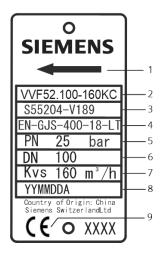
VXF47

VXF42..C

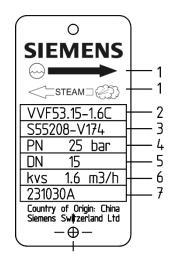
		Page
A	Valve and actuator coupling	40
в	Valve stem	40
С	Stem sealing gland	40
D	Valve neck	40
E	Type plate	7
F	Flange	46

2-port valves

4419Z26	SIEMENS	
	VVF47.100	- 1
	S55220-V109	- 2
	Origin: China	- 3
	YYMMDDA	- 4
	PN 16bar	- 5
	DN 100	- 6
	Kvs 160m ³ /h	- 7
	Tmax 95°C	- 8
	EN-GJL-250	- 9
	A — AB	-10

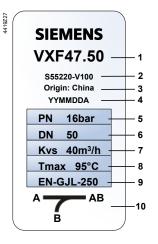

- 1 Product number
- 2 Stock number
- 3 Country of origin
- 4 Serial number
- 5 Nominal pressure class
- 6 Nominal size
- 7 k_{vs} value
- 8 Max. temperature range
- 9 Valve housing material
- 10 Flow direction

	1
WF42.25-6.3C	2
S55204-V148	<u> </u>
EN-GJL-250	4
PN 16 bar	5
DN 25	6
Kvs 6.3 m ³ /h	- 7
YYMMDDA	8
Country of Origin: China Siemens Switzerland Ltd	9
× ((O	


SI	O EM	ENS	- 1
VVF2	2.65	KC] 2
S5520	4-V182	2]— з
EN-0	GJL-2	50	1 4
PN	16	bar	 5
DN	65		 6
Kvs	63	m³/h	1⊢7
YYMM	DDA		8
Counti Sieme	ry of Orig ns Switze	jin : China erland Ltd	
Č CÉ	0		

- **1.** Flow direction for fluids
- 2. Product number
- 3. Stock number
- 4. Valve housing material
- 5. Nominal pressure class
- 6. Nominal size
- 7. Kvs value
- 8. Serial number
- 9. CE mark

- 1. Flow direction for fluids
- 2. Product number
- 3. Stock number
- 4. Valve housing material
- 5. Nominal pressure class
- 6. Nominal size
- 7. K_{VS} value
- 8. Serial number
- 9. CE mark



- **1.** Flow direction for fluids
- 2. Product number
- 3. Stock number
- 4. Valve housing material
- 5. Nominal pressure class
- Nominal size
 Kvs value
- K_{VS} value
 Serial number

- 1. Flow direction for fluids
- 2. Product number
- 3. Stock number
- 4. Nominal pressure class
- 5. Nominal size
- 6. Kvs value
- 7. Serial number
- 8. CE mark

3-port valves

- 1 Product number
- 2 Stock number
- 3 Country of origin
- 4 Serial number
- 5 Nominal pressure class
- 6 Nominal size
- 7 k_{vs} value
- 8 Max. temperature range
- 9 Valve housing material
- 10 Flow direction

VXF42.25-6.3C	2
S55204-V165	3
EN-GJL-250	4
PN 16 bar	5
DN 25	6
Kvs 6.3 m ³ /h	-7
YYMMDDA	8
Country of Origin: China Siemens Switzerland Ltd	9
(J

- **1** Flow direction for fluids
- 2 Product number
- 3 Stock number
- 4 Valve housing material
- 5 Nominal pressure class
- 6 Nominal size
- 7 K_{vs} value
- 8 Serial number
- 9 CE mark

2.2 Use

The valves are used as control or shutoff valves in heating, ventilation and air conditioning plants systems as a control valve.

For closed circuits only.

All 3-port valves can be used as mixing valves (preferred use) or diverting valves. For use in closed or open hydraulic circuits, observe chapter "2.13 Cavitation", page 38.

		erature Ige		Va	lve							
Medium	Tmin (°C)	T _{max} (°C)	VVF42C	VVF42KC / VVF52KC	VXF42C	VVF53C	Note					
Cold water	1	25					-					
Low-temperature hot water	1	130					-					
High-temperature	130	150					-					
hot water 1)	150	180	-	-	-		-					
	-5	150					For medium					
Water with	-10	150					temperatures below 0°C, the					
antifreeze	-20	150	-	-	-		stem heating ASZ6.6 has to be installed.					
Cooling water 2)	1	25	-		-		-					
	-5	150					For medium					
Brines	-10	150					temperatures below 0°C, the					
Diffies	-20	150	-	-	-		stem heating ASZ6.6 has to be installed.					
Super-clean water (demineralized and deionized water)	1	150	-	-	-		-					
Demineralized water according to VDI 2035 / SWKI_B 102-01	1	150					-					
		¹⁾ Differentiation due to saturated steam curve ²⁾ Open circuits										

Compatibility with medium and temperature ranges 2.2.1

2.2.2 Fields of use

Fields of use			Pro	duct number		
Fields of use	3-por	t valves		2-port valve	S	
	VXF47	VXF42C	VVF47	VVF42C	VVF42KC/ VVF52KC	VVF53C
Generation						
Boiler plants	-		-			
District heating plants	-	-	-	•	•	•
Chiller plants						•
Cooling towers 1)	-	-	-	-		
Distribution						
Heating groups						
Air handling units ¹⁾ Open circuits				•		

2.3.1 2-port valves with flanged connections

 $\Delta pmax$ = Maximum permissible differential pressure across the valve, valid for the entire actuating range of the motorized valve

 ΔpS = Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure)

	=								•	•		r pres						
					Actua	ators	Datas		Dooitioni	Stroke		20 mr 700 N	n J		40 mm 1600 N			
	F				SB	×	N45		Positioni	Ig IOICE	-	7001	•		1000 1			
			PN 16		SB		N45					· SIEMENS			SIEMENS ®			
	F		i		02	• • •	1											
			R	-														
		de.	- OF	6								-		Line of the local division of the local divi	-			
												1.	1					
		-	dellar .									C. C.				L.		
												ିଚ			000	P		
		Da	ata shee	:								SBX			SBV			
	Ļ		N4419		Stock n	umber	D	N	k _{vs}	Sv	Δ	0 _s	Δp_{max}	Δр	s 🛛	∆p _{max}		
	L L		195°C				_		[m³/h]				[kF	'a]				
		١	/VF47.50		S55220	-V106	50	D	40		30	00	300	-		-		
		١	/VF47.65		S55220	-V107	6	5	63		17	75	175	400	C	300		
		١	/VF47.80		S55220	-V108	8	D	100	>50	10	00	100	250	C	250		
	Γ	V	VF47.100		S55220	-V109	10	0	160	>50				400	C	300		
		V	VF47.125		S55220	-V110	12	5	250				-	400	C	300		
		V	VF47.150		S55220	-V111	15	0	315					400	2	300		
	L			Stroke				20 ו	mm						40	mm		
	Actuators	Data		itioning														
		Shee	я .	force	800) N	800) N	1000	Ν	280	0 N	1600) N	160	00 N	280	0 N
PN 16	SAX	N450			· SEARCAS		4		chum	······	181	111110	© SIEMENS		A	1	781	111111
1	SAV SKD	N4503 N456					A.L			-					20		-	
	SKB	N4564								Land Land		1			and a state of the			1
	SKC	N4566	6			1					-					11	-	
					2				1				7					
and a					0				1		¢	0.3	0.0				E	2
Data Sheet					SB)	(**	SA	× *	SKE)	SK	B	SBV	**	SA	V*	SK	'C
A6V10794157	Stock	DN	k vs	Sv	Δps	Δp _{max}	Δps	Δp _{max}		Δp _{max}	Δps	Δp _{max}	Δps	 Δp _{max}	Δps	Δp _{max}	Δps	Δp _{max}
-10150 °C	number		[m ³ /h]	- •	1.	max	10	max	ļ,	max	[kF		10	1 1147	10	max		Tinax
VVF42.25-6.3C	S55204-V148	25	6.3									-						
VVF42.25-10C	S55204-V149	25	10		1600		1600		1600				-	-	-	-		
VVF42.32-16C	S55204-V150	32	16	> 50	900	400	900	400	1200		1600							
VVF42.40-16C	S55204-V151	40	16		550		550			400								
VVF42.40-25C	S55204-V152	40							750				1250		1250			
VVF42.50-31.5C		40	25		000		550		750				1250	400	1250	400		-
	S55204-V153	50	31.5			300		300			1200	400		400		400	-	-
VVF42.50-40C	S55204-V154	50 50	31.5 40		350	300	350	300	450		1200	400	1250 750	400	1250 750	400	-	-
VVF42.65-50C	S55204-V154 S55204-V155	50 50 65	31.5 40 50			300 150		300 150		200	1200 700	400		400 400		400	-	-
VVF42.65-50C VVF42.65-63C	S55204-V154 S55204-V155 S55204-V156	50 50 65 65	31.5 40 50 63		350		350		450	200		400	750		750		-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C	S55204-V154 S55204-V155 S55204-V156 S55204-V157	50 50 65 65 80	31.5 40 50 63 80		350		350		450	200		400	750		750		-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158	50 50 65 65 80 80	31.5 40 50 63 80 100		350 200	150	350 200	150	450 250		700	400	750 450	400	750 450	400	-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V159	50 50 65 80 80 100	31.5 40 50 63 80 100 125		350 200	150	350 200	150	450 250		700	400	750 450	400	750 450	400	-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V159 S55204-V159	50 50 65 65 80 80 100 100	31.5 40 50 63 80 100 125 160	> 100	350 200	150	350 200	150	450 250		700	400	750 450 250	400 225	750 450 250	400 225	-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V159 S55204-V160 S55204-V161	50 50 65 80 80 100 100 125	31.5 40 50 63 80 100 125 160 200	> 100	350 200	150	350 200	150	450 250		700	400	750 450 250	400 225	750 450 250	400 225	-	•
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C VVF42.125-250C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V159 S55204-V160 S55204-V161 S55204-V162	50 50 65 80 100 100 125 125	31.5 40 50 63 80 100 125 160 200 250	> 100	350 200	150 75	350 200	150 75	450 250	125	700 450		750 450 250 160 125	400 225 125 90	750 450 250 160 125	400 225 125 90		
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V159 S55204-V160 S55204-V161	50 50 65 80 80 100 100 125	31.5 40 50 63 80 100 125 160 200	> 100	350 200	150 75	350 200	150 75	450 250	125	700 450		750 450 250 160	400 225 125	750 450 250 160	400 225 125		
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C VVF42.125-250C VVF42.150-315C	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V159 S55204-V160 S55204-V161 S55204-V162 S55204-V163	50 50 65 80 100 125 125 150	31.5 40 50 63 80 100 125 160 200 250 315	> 100	350 200 125 -	150 75 -	350 200 125 -	150 75 -	450 250 175 -	-	700 450	-	750 450 250 160 125 80	400 225 125 90 60	750 450 250 160 125 80	400 225 125 90 60	-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C VVF42.125-250C VVF42.150-315C VVF42.150-400C	S55204-V154 S55204-V155 S55204-V157 S55204-V158 S55204-V159 S55204-V160 S55204-V160 S55204-V161 S55204-V162 S55204-V163 S55204-V164	50 50 65 80 100 125 150 150	31.5 40 50 63 80 100 125 160 200 250 315 400	> 100	350 200	150 75	350 200	150 75	450 250	125	700 450		750 450 250 160 125	400 225 125 90	750 450 250 160 125	400 225 125 90	-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C VVF42.125-250C VVF42.150-315C VVF42.150-400C VVF42.65KC	S55204-V154 S55204-V155 S55204-V156 S55204-V157 S55204-V158 S55204-V160 S55204-V160 S55204-V161 S55204-V162 S55204-V163 S55204-V164 S55204-V182	50 50 65 80 100 125 125 150 65	31.5 40 50 63 80 100 125 160 200 250 315 400 63	> 100	350 200 125 -	150 75 -	350 200 125 -	150 75 -	450 250 175 -	-	700 450	-	750 450 250 160 125 80 -	400 225 125 90 60	750 450 250 160 125 80 -	400 225 125 90 60	-	-
VVF42.65-50C VVF42.65-63C VVF42.80-80C VVF42.80-100C VVF42.100-125C VVF42.100-160C VVF42.125-200C VVF42.125-250C VVF42.150-315C VVF42.150-400C VVF42.65KC VVF42.80KC	S55204-V154 S55204-V155 S55204-V156 S55204-V158 S55204-V159 S55204-V160 S55204-V161 S55204-V161 S55204-V163 S55204-V163 S55204-V164 S55204-V182 S55204-V183	50 50 65 80 100 125 150 150 65 80	31.5 40 50 63 80 100 125 160 200 250 315 400 63 100	> 100	350 200 125 -	150 75 -	350 200 125 -	150 75 -	450 250 175 -	-	700 450	-	750 450 250 160 125 80	400 225 125 90 60	750 450 250 160 125 80	400 225 125 90 60	-	-

* Suitable for medium temperatures up to 130° C.

** Suitable for medium temperatures up to 95°C.

VVF52KC					s	KD	s	KB	S	кс	
CEO	A	Actuators							U		
PN 25		Stroke					20) mm	40	mm	
	Positioning force				10	000 N	2800 N		2800 N		
	Da	ita sheet			N4561		N4564		N4566		
-10150 ℃	Stock number	DN	Kvs	Sv	∆ps	$\Delta \mathbf{pmax}$	∆ps	∆pmax	∆ps	∆pmax	
			[m3/h]		[kPa]						
VVF52.65-63KC	S55204-V187	65	63	>100	2500	800	2500	800	-	-	
VVF52.80-100KC	S55204-V188	80	100	>100							
VVF52.100-160KC	S55204-V189	100	160	> 100	-	-	-	-	2500	800	
VVF52.125-200KC	S55204-V190	125	200	> 100							
VVF52.150-315KC	S55204-V191	150	315	> 100							

	_	Data		roke			20	mm				40 ו	mm				
	Actuators	Sheet		ioning rce	80	0 N	100	0 N	280	0 N	160	0 N	280	0 N			
PN 25, PN 16	SAX SKD SKB SAV SKC	N4501 N4561 N4664 N4503 N4566															
Datasheet	Stock	ľ	Kvs		SA	X	SK		SK		SA		SK	C			
A6V14669668	number	DN	[m ³ /h]	Sv	∆p₅	Δp_{max}	∆p₅	Δp_{max}	Δp_s	Δp_{max}	∆p₅	Δp_{max}	Δps	Δp_{max}			
-10150 °C						1			[kl	Pa]							
VVF53.15-0.16C	S55208-V164	15	0.16	-													
VVF53.15-0.2C	S55208-V165	15	0.2	-													
VVF53.15-0.25C	S55208-V166	15	0.25														
VVF53.15-0.32C	S55208-V167	15	0.32	1						1200							
VVF53.15-0.4C	S55208-V168	15	0.4	> 50													
VVF53.15-0.5C	S55208-V169	15	0.5	1													
VVF53.15-0.63C	S55208-V170	15	0.63	1													
VVF53.15-0.8C	S55208-V171	15	0.8	1	2500		2500										
VVF53.15-1C	S55208-V172	15	1	1					2500								
VVF53.15-1.25C	S55208-V173	15	1.25			1200		1200									
VVF53.15-1.6C	S55208-V174	15	1.6	1							-	-					
VVF53.15-2C	S55208-V175	15	2	-													
VVF53.15-2.5C	S55208-V176	15	2.5														
VVF53.15-3.2C	S55208-V177	15	3.2	-									-	-			
VVF53.15-4C	S55208-V178	15	4														
VVF53.20-6.3C	S55208-V179	20	6.3		1600												
VVF53.25-5C	S55208-V180	25	5	1													
VVF53.25-6.3C	S55208-V181	25	6.3				2100										
VVF53.25-8C	S55208-V182	25	8	1													
VVF53.25-10C	S55208-V183	25	10	1	000	750	1000	4400									
VVF53.32-16C	S55208-V184	32	16	> 100	> 100	> 100	> 100	900	750	1200	1100						
VVF53.40-12.5C	S55208-V185	40	12.5														
VVF53.40-16C	S55208-V186	40	16	1	550	500	750	650	2000		1250	1150					
VVF53.40-20C	S55208-V187	40	20	1													
VVF53.40-25C	S55208-V188	40	25	1													
VVF53.50-31.5	S55208-V127	50	31.5	1	350	300	450	400	1200	1150	750	700					
VVF53.50-40	S55208-V128	50	40	1							450	400	700	050			
VVF53.65-63	S55208-V129	65	63	-							450	400	700	650			
VVF53.80-100	S55208-V130	80	100	1							250	225	450	400			
VVF53.100-160	S55208-V131	100	160	1	-	-	-	-	-	-	160	125	300	250			
VVF53.125-250	S55208-V132	125	250	1							125	90	175	160			
VVF53.150-400	S55208-V133	150	400				0500	4050	0500	4050	80	60	125	100			
VVF53.50-40K	S55208-V134	50	40	-			2500	1250	2500	1250			-	-			
VVF53.65-63K	S55208-V135	65	63														
VVF53.80-100K	S55208-V136	80	100														
VVF53.100-150K	S55208-V158	100	150	> 100									2500	1250			
VVF53.125-220K	S55208-V159	125	220		-	-	-	-	-	-	-	-					
VVF53.150-315K	S55208-V160	150	315														
VVF53.200-450K	S55208-V161	200	450	> 50									1200	800			
VVF53.250-630K	S55208-V162	250	630										1000	800			

2.3.2 3-port valves with flanged connections

 Δp_{max} = Maximum permissible differential pressure across the valve, valid for the entire actuating range of the motorized valve

 Δp_s = Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure)

				Stroke	20 mm	40 mm
	Actuators	Datas	heet	Positioning force	700 N	1600 N
PN 16	SBX SBV	N45 N45			· SELMENS	e sidaças e
Data sheet					SBX	SBV
N4419	0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	DN	k _{vs}	Sv	Δp_{max}	Δp_{max}
195°C	Stock number		[m ³ /h]		[<pa]< td=""></pa]<>
VXF47.50	S55220-V100	50	40		300	-
VXF47.65	S55220-V101	65	63		175	300
VXF47.80	S55220-V102	80	100	. 50	100	250
VXF47.100	S55220-V103	100	160	>50		200
VXF47.125	S55220-V104	125	250		-	100
VXF47.150	S55220-V105	150	315			75

		Data		Stroke				20 r	nm				40 mm					
	Actuators	Shee	Doci	tioning force	800	Ν	800) N	100	0 N	280	0 N	160	0 N	160	0 N	280	0 N
PN 16	SBX SBV SAX	N4519 N4519 N4501)		e) SIEMENS		-		1				© SIEMENS	*	1			
	SAV SKD SKB SKC	N4503 N4561 N4564 N4566	3 								- C		1.	20		IJ		
Data Sheet	Stock				SBX Δp _m		SA Δp	may	SK Δp	may	SK Δp	max	SB∖ ∆p		SA Δp	V*	SK Δp	may
A6V10794157	number	DN	k vs	Sv	AŢ⇒AB		A∎⇒AB		A∎⇒AB		A∎⇒AB		A∎⇒AB		A∎⇒AB		A∎⇒AB	
-10150 °C			[m³/h]									[kF	Pa]					
VXF42.25-6.3C	S55204-V165	25	6.3															
VXF42.25-10C	S55204-V166	25	10										-	-	-	-		
VXF42.32-16C	S55204-V167	32	16	> 50	400		400											
VXF42.40-16C	S55204-V168	40	16		100		100	400	400 100									
VXF42.40-25C	S55204-V169	40	25															
VXF42.50-31.5C	S55204-V170	50	31.5	-	300		300				-	-	400	100	400	100	-	-
VXF42.50-40C	S55204-V171	50	40		300		300						400	100	400	100		
VXF42.65-50C	S55204-V172	65	50		150		150		200	80								
VXF42.65-63C	S55204-V173	65	63	-	100	50	100	50	200	00								
VXF42.80-80C	S55204-V174	80	80		75	50	75	50	125	50			225	50	225	50		
VXF42.80-100C	S55204-V175	80	100	> 100	15		75		120	50			220	50	220	50		
VXF42.100-125C	S55204-V176	100	125	- 100									125		125		250	
VXF42.100-160C	S55204-V177	100	160										125		120		200	
VXF42.125-200C	S55204-V178	125	200		_		_	_	_	_	_	-	90	50	90	50	160	50
VXF42.125-250C	S55204-V179	125	250		-	-	_	-	-	-	-	-	30	50	30	50	100	50
VXF42.150-315C	S55204-V180	150	315										60		60		100	
VXF42.150-400C	S55204-V181	150	400										00		00		100	

* Suitable for medium temperatures up to 130°C.

** Suitable for medium temperatures up to 95°C.

Product type	Stock number	Stroke	Positioning force	Operating voltage	Positioning signal	Spring return time	Positioning time	LED	Manual adjuster	Auxiliary functions
SBX51	S55160-A108				420 mA					1)
SBX61	S55160-A100				DC 010 V					5)
SBX118.00/NB	S55160-A106			AC 24 V	NB-IoT DC 010 V (0)420 mA					
SBX118.00	S55160-A107	20 mm	700 N		Modbus RTU DC 010 V (0)420 mA	_	120 s	_	Spanner	-
SBX81	S55160-A101									
SBX31	S55160-A102			AC 230 V	3-position					
SBV151	S55160-A109				420 mA					5)
SBV61	S55160-A103	40	4000 N	AC 24 V	DC 010 V		100 -			3,
SBV81	S55160-A104	40 mm	1600 N		2 position		180 s			-
SBV31	S55160-A105			AC230 V	3-position					-
SAX31.00	S55150-A105			AC 230 V	0		120 s			
SAX31.03	S55150-A106			AC 230 V	3-position			-		1)
SAX61.03	S55150-A100	20 mm	800 N	AC 24 V	010 V 420 mA 01000 Ω	-	30 s	~	Press and fix	2), 3)
SAX81.00	S55150-A102]		DC 24 V	2 position		120 s	J	Droop on d fi	1)
SAX81.03	S55150-A103	1			3-position	-	30 s	-	Press and fix	.,
SKD32.21	SKD32.21	-		AC 230 V	3-position	8 s	Opening: 30 s Closing: 10 s			1)
SKD32.50	SKD32.50	4		AC 230 V	0-position	-	120 s	-		ĺ,
SKD32.51	SKD32.51					8 s	120 3		_	
SKD60	SKD60	-			010 V	-				2)
SKD62 SKD62U	SKD62 SKD62U	20 mm	1000 N		010 V 420 mA 01000 Ω	15 s	Opening: 30 s Closing: 15 s	~	Turn, position is maintained	2)
SKD62UA	SKD62UA			AC 24 V					_	4)
SKD82.50 SKD82.50U	SKD82.50 SKD82.50U	-			3-position	-	120 s	-		1)
SKD82.51 SKD82.51U	SKD82.51 SKD82.51U					8 s				
SKB32.50	SKB32.50					-				
SKB32.51	SKB32.51			AC 230 V	3-position	10 s	120 s	-		1)
SKB60	SKB60					-			-	
SKB62	SKB62				010 V		Opening: 120 s	\checkmark		2)
SKB62U	SKB62U	20 mm	2800 N		420 mA 01000 Ω	10 s	Closing: 20 s	v	Turn, position	
SKB62UA	SKB62UA			AC 24 V					is maintained	4)
SKB82.50 SKB82.50U	SKB82.50 SKB82.50U	-			3-position	-	120 s	_		1)
SKB82.51 SKB82.51U	SKB82.51 SKB82.51U					10 s				
SAV31.00	S55150-A112	4		AC 230 V	3-position			-		-
SAV61.00 SAV61.00U	S55150-A110 S55150-A110- A100	10	1600 N		DC 0 10V DC 4 20 mA 0 1000 Ω	-	120 s	\checkmark	Press and fix	2)
SAV81.00 SAV81.00U	S55150-A111 S55150-A111- A100	. 40 mm		AC 24 V DC 24 V	3-position		1203	-		-
SKC32.60	SKC32.60			10.000.11	0	-	100 -			1)
SKC32.61	SKC32.61	1		AC 230 V	3-position	18 s	120 s	-		•)
SKC60	SKC60	1				-			1	
SKC62	SKC62	1			010 V 420 mA		Opening: 120 s	\checkmark		2)
SKC62U	SKC62U	40 mm	2800 N		420 mA 01000 Ω	20 s	Closing: 20 s		Turn, position is maintained	
SKC62UA	SKC62UA	4		AC 24 V					is maintained	4)
SKC82.60 SKC82.60U	SKC82.60 SKC82.60U				3-position	-	120 s	-		1)
SKC82.61 SKC82.61U	SKC82.61 SKC82.61U	¹⁾ Aux	ciliary switch		•	18 s				

2.3.3 Overview of actuators

¹⁾ Auxiliary switch, potentiometer

²⁾ Position feedback, forced control, selection of valve characteristic
 ³⁾ Optional: Sequence control, selection of acting direction

⁴⁾ Plus sequence control, stroke limitation, and selection of acting direction

⁵⁾ 4...20 mA function module

2.4 Ordering

Example

Product type	Stock number	Quantity
VXF42.65-63C	S55204-V173	1
SKD32.50	BPZ:SKD32.50	1

Delivery

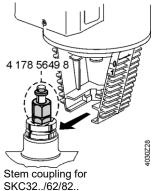
Valves, actuators and accessories are packed and delivered as separate items. Counter-flanges, bolts, and gaskets must be provided on site.

2.5 Accessories

Product type	Stock number	Description	Note	Example
ASZ6.6	S55845-Z108	Stem heating element	Required for medium temperatures <0°C.	

2.6 **Product replacement**

The VVF42..C, VXF42..C valves replace the valves of the C/VVF31../VXF31.., C/VVF40../VXF40.. lines that have been produced by Siemens Beijing plant.


For most types of valves operating in the field, a one-to-one replacement is available.

Further use of actuators of the SKD32../60/62/82.., SKB32../60/62/82.., SQX31../61../81... and SQX32../62../82.. lines is possible. Actuators of the SKC32../62/82.. lines require a new stem coupling since the diameter of the new stem is only 10 mm. Stem couplings must be ordered as separate items (stock no. 4 178 5649 8).

If the valve to be replaced was driven by an actuator of the SKD31../61../81.., SKB31../61../81.. or SKC31../61../81.. lines, Siemens recommends to replace the actuator as well, the reason being the actuator's age.

	2-port valves with flanged connection	s			Replacement		
	Туре	DN	Adapter	Stem coupling ¹⁾	Product type	DN	
VVF31	k _{vs} - 6.3, 10, 12, 16, 19, 25, 31, 40, 49, 63, 78, 100	1580	-	-	VVF42C	1580	
VVF31	k _{vs} - 125, 160, 200, 250, 300, 315	100150	-	4 178 5649 8	VVF42C	100150	
VVF40	k _{vs} - 6.3, 10, 12, 16, 19, 25, 31, 40, 49, 63, 78, 100	2580	-	-	VVF42C	1580	
VVF40	k _{vs} - 125, 160, 200, 250, 300, 315	100150	-	4 178 5649 8	VVF42C	100150	
VVF31	k _{vs} - 6.3, 10, 12, 16, 19, 25, 31, 40, 49, 63, 78, 100	1580	-	-	VXF42C	1580	
VVF31	k _{vs} - 125, 160, 200, 250, 300, 315	100150	-	4 178 5649 8	VXF42C	100150	
VVF40	k _{vs} - 6.3, 10, 12, 16, 19, 25, 31, 40, 49, 63, 78, 100	2580	-	-	VXF42C	1580	
VVF40	k _{vs} - 125, 160, 200, 250, 300, 315	100150	-	4 178 5649 8	VXF42C	100150	

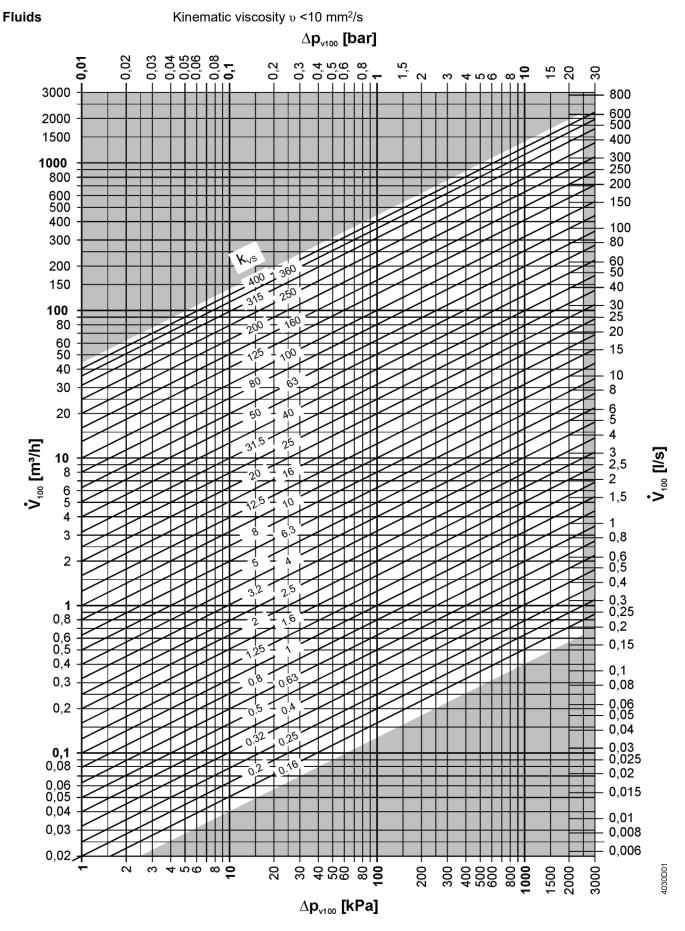
1) Since the new valves use uniform stem couplings, valves driven by electrohydraulic actuators SKC.. require a new stem coupling.

SKC32../62/82.. (stock no. 4 178 5649 8)

2.7 Spare parts

Stem sealing gland for	DN	Stock number	Example
VVF42C	2580	BPZ: 428488060	Stem sealing gland
VVF42KC			
VVF52KC			
VXF42C			
VVF53C			
VVF42C	100150	BPZ: 467956290	
VVF42KC			
VVF52KC			
VXF42C			

2.8 Valve sizing for fluids (water, heat transfer oil)


2.8.1 Procedure for valve sizing

Essential values and formulas required for valve sizing:

1	Determine the basic hydraulic	-				
	circuit					
2	Determine Δp_{VR} or Δp_{MV}	One of the factors that determines control sta on the type of header and the hydraulic circui	bility is the valve authority $P_{V}.$ It is determined depending t			
		Header with pressure and variable	• Header with pressure and constant volumetric flow,			
		volumetric flow	or			
			Header with low differential pressure and variable volumetric flow			
		Continue with Δp_{VR}	Continue with Δp_{MV}			
3	Determine ∆p _{V100}	$\Delta p_{V100} \geq \frac{\Delta p_{VR}}{2}$	$\Delta p_{V100} \ge \Delta p_{MV}$			
4	Determine the volumetric flow V_{100}	Determine V ₁₀₀ depending on the type of med Water without antifreeze:	lium Water with antifreeze, heat transfer oil:			
		ý Q ₁₀₀	ý Q ₁₀₀ · 3600			
		$\dot{V}_{100} = \frac{Q_{100}}{1.163 \cdot \Delta T}$	$\dot{V}_{100} = \frac{Q_{100} \cdot 3600}{c \cdot \rho \cdot \Delta T}$			
5	Determine the k_{vs} value	There are different ways to determine the $k_{\nu s}$	value:			
		Flow chart By way of calculation	HIT sizing and Valve slide			
		V ₁₀	selection: rule			
		$K_V = \frac{1}{\sqrt{\Delta p_0}}$	www.siemens.com/hit			
		$k_{V} = \frac{\dot{V}_{100}}{\sqrt{\frac{\Delta P_{V100}}{100}}}$ selection: <u>www.siemens.com/hit</u>				
		$\frac{1}{1}$ Determine the k _{vs} value according to:				
		$0.85 \cdot k_v - value < k_{vs} - value^{-1}$				
		or within the following band:				
		$0,74 \cdot k_{VS}$ – value $< k_V < 1.175 \cdot k_{VS}$ – value				
		This procedure shows the mathematical approach. The following examples make use of the flo				
		and show the way of calculation	and from a cloud office of the conclusion of the solid size D			
6	Check the resulting differential pressure Δp_{V100}	The resulting differential pressure Δp_{V100} is us	sed for calculating the valve authority Pv:			
	unerential pressure Apvilo	$\Delta p_{V100} = 100 \cdot \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2$				
7	Select a suitable line of	Select the type of valve (2-port, 3-port, or 3-p	ort valve with bypass):			
	valves	 Type of connection (flanged, externally or in 	ternally threaded, soldered)			
		• PN class				
		 Nominal size DN Maximum or minimum medium temperature 				
		• Type of medium				
8	Check the valve authority Pv	Check P_V with the resulting differential pressu	Ire Δp _{V100} :			
	(control stability)	Header with pressure and variable	Header with pressure and constant volumetric flow,			
		volumetric flow	or			
			Header with low differential pressure and variable volumetric flow			
		$P_{V} = \frac{\Delta P_{V100}}{1}$	$P_{V} = \frac{\Delta P_{V100}}{2}$			
		$P_V = \frac{\Delta p_{VR}}{\Delta p_{VR}}$	$P_{V} = \frac{1}{\Delta p_{V100} + \Delta p_{MV}}$			
9	Select the actuator	Select the actuator according to the following	Positioning signal Auxiliary functions			
10	Check the working ranges	Differential pressure $\Delta p_{max} > \Delta p_{V0}$	Positioning time			
		Closing pressure $\Delta p_s > H_0$				
11	Valve and actuator	Write down product and stock number of the $\frac{1}{2}$	selected valve and actuator			
			is usually too high. To the benefit of a higher valve			

¹⁷ Experience shows that the selected k_{vs} value is usually too high. To the benefit of a higher value authority Siemens recommends to check sensibly whether a value with a k_{vs} value of approx. 85 % of the calculated k_{vs} value is possible. If this is not possible, the second rule applies.

2.8.2 Flow chart

2.8.3 Impact of fluid properties on valve sizing

Valves are sized based on the volumetric flow passing through them. The most important characteristic of a valve is its k_{vs} value. Since this value is determined with water at a temperature of +5...30 °C and a differential pressure Δp of 100 kPa (1 bar), additional influencing factors must be taken into consideration if the properties of the medium passing through the valve are different.

The following properties of a medium affect valve sizing:

- The density ρ and the specific heat capacity c have a direct impact on the volumetric flow, which transfers the required amount of heat or cooling energy
- The kinematic viscosity v influences the flow conditions (laminar or turbulent) in the valve and thus the differential pressure Δp at a given volumetric flow V

2.8.3.1 Density ρ

The amount of heat Q carried by a fluid depends on the available mass flow m, the specific heat capacity c, and the temperature spread ΔT :

 $\dot{\mathbf{Q}} = \dot{\mathbf{m}} \cdot \mathbf{c} \cdot \Delta \mathbf{T}$

In the HVAC field, calculations are usually based on the volumetric flow V, resulting from the available mass flow m and the density ρ :

 $\dot{\textbf{Q}} = \dot{\textbf{V}} \cdot \boldsymbol{\rho} \cdot \textbf{c} \cdot \boldsymbol{\Delta}\textbf{T}$

Within the temperature range normally used in the HVAC field, the density ρ of water is assumed to be about 1000 kg/m³ and the specific heat capacity c 4.19 kJ/(kg·K). This makes it possible to apply a simplified formula with a constant of 1.163 kWh/(m³·K) for calculating the volumetric flow V in m³/h:

The rated capacity Q_{100} of a plant with the valve fully open is calculated with the following formula:

V ₁₀₀ =	Q ₁₀₀		
v 100 −	$1.163 \cdot \Delta T$		

For watery solutions, such as mixtures of water and antifreeze, or other fluids like heat transfer oils, refer to the chapters below.

2.8.3.2 Specific heat capacity c

The amount of heat Q carried by a fluid depends on the available mass flow m, the specific heat capacity c, and the temperature spread ΔT .

Within the temperature range normally used in the HVAC field, the specific heat capacity c of water changes only slightly. Therefore, the approximate value used for the specific heat capacity c is 4.19 kJ/(kg·K). This makes it possible to apply a simplified formula with a constant of 1.163 kWh/(m³·K) for calculating the volumetric flow V in m³/h:

If watery solutions, such as mixtures of water and antifreeze, or other fluids like heat transfer oils are used for the transmission of heat, the required volumetric flow V is to be calculated with the density ρ and the specific heat capacity c at the operating temperature:

The specific heat capacity of fluids is specified in trade literature. For mixtures, the specific heat capacity c is calculated on the basis of the mixture's mass proportions m_1 and m_2 :

 $c_{Gemisch} = \frac{m_1 \cdot c_1 + m_2 \cdot c_2}{m_1 + m_2}$

In the case of heating applications, the specific heat capacity c_1 or c_2 at the highest temperature must be used, and in the case of cooling applications that at the lowest temperature.

2.8.3.3 Kinematic viscosity v

The kinematic viscosity v affects the type of flow (laminar or turbulent) and thus the friction losses inside the valve. It has a direct impact on the differential pressure at a given volumetric flow.

The kinematic viscosity v is specified either in mm²/s or centistokes (cSt): 1 cSt = 10^{-6} m²/s = 1 mm²/s.

Water at a temperature of between 5 and 30 °C is used to determine the k_{vs} value as a comparison value. Within this temperature range, water has a kinematic viscosity of 1.6 to 0.8 mm²/s. The flow inside the valve is turbulent.

When sizing values for media with other kinematic viscosities v, a correction must be made. Up to a kinematic viscosity v of less than 10 mm²/s, the impact is negligible since it is smaller than the permissible tolerance of the k_{vs} value

(+/-10 %).

In general practice, the correction is made by applying a correction factor F_{R} , which gives consideration to the different flow and friction conditions when calculating the k_{vs} value.

 F_R is the factor used for the impact of the valve's Reynolds number. It must be applied when there is nonturbulent flow in the valve, when the differential pressure is low, for example, in the case of high-viscosity fluids, very low flow coefficients, or combinations of them. It can be determined by way of experiment.

F_R = flow coefficient for nonturbulent flow conditions divided by the flow coefficient ascertained under the same plant conditions for turbulent flow (EN 60534-2-1[1998])

 k_{ν} value under nonturbulent flow conditions:

Kinematic viscosity [mm²/s]	Correction factor F _R	Kinematic viscosity [mm ² /s]	Correction factor F_R
2000	0.52	60	0.73
1500	0.53	40	0.77
1000	0.55	30	0.8
800	0.56	25	0.82
600	0.57	20	0.83
400	0.60	15	0.86
300	0.61	10	0.90
250	0.62	8	(0.93) ¹⁾
200	0.64	6	(0.94) ¹⁾
150	0.70	4	(0.95) ¹⁾
100	0.69	3	(0.97) 1)
80	0.70		

Correction factor F_R for different kinematic viscosities v

¹⁾ Impact in the case of kinematic viscosities up to 10 mm²/s is negligible

2.8.4 Influencing factors with selected groups of fluids

Media properties to be considered for a few selected groups of fluids:

	Density ρ	Specific heat capacity c	Kinematic viscosity v
Formula	$\dot{V}_{100}=\;\frac{\dot{Q}_{100}\cdot 3600}{c\cdot\rho\cdot\Delta T}$	$\dot{V}_{100} = \frac{\dot{Q}_{100} \cdot 3600}{c \cdot \rho \cdot \Delta T}$	$k_{V} = \frac{\dot{V}_{100}}{F_{R}} \cdot \frac{1}{\sqrt{\frac{\Delta p_{100}}{100}}}$
Group of fluids			
Water	No	No	No (F _R = 1)
Water with antifreeze	Yes	Yes	No (F _R = 1)
Heat transfer oils	Yes	Yes	Yes
Brines	Yes	Yes	Yes

Notes on water and water with antifreeze:

The HVAC Integrated Tool (HIT) supports sizing and selection of valves for water and water with antifreeze (<u>www.siemens.com/hit</u>).

2.8.5 Rangeability Sv, minimum controllable output Qmin

When sizing and selecting a valve, it must be ensured that – in the controlled operating state – the output does not drop below the minimum controllable output Q_{min} . Otherwise, the controlling element only regulates in on/off mode within the range of the initial flow surge. On/off mode reduces the plant's energy efficiency and adversely affects the controlling element's life.

The rangeability S_V is an important characteristic used for assessing the controllable range of a controlling element.

The smallest volumetric flow k_{vr} that can be controlled is the volumetric flow passing through the valve when it opens. Output Q_{min} is the smallest output of a consumer (e.g. of a radiator) that can be controlled in modulating mode.

For more detailed information on the subject, refer to the brochure "Hydraulics in building systems" (ordering no. 0-91917-en).

2.9 Sizing valves for steam

Since steam is compressible, valve sizing for steam must be based on other
criteria. The most important characteristic of compressible flow is that the speed of
flow in the throttling section can only increase up to the speed of sound. When this
limit is reached, the speed of flow and thus the volumetric flow, or the steam mass
flow, no longer increases, even if the differential pressure Δp rises. To ensure good
controllability and favorably priced valve selection, it is advisable to have the
differential pressure in normal operation as close as possible to the critical
pressure ratio.

Before starting valve sizing, the plant-related process parameters and the prevailing operating state must be defined:

- Absolute steam pressure [kPa abs], [bar abs]
- Temperature of saturated or superheated steam [°C]
- Differential pressure Δp_{max} in normal operation •

The dryness of saturated steam at the valve's inlet must be > 0.98.

During plant startup or shutdown, supercritical pressure conditions can occur:

 In terms of potential damage to the valve, a subcritical pressure ratio is far less crucial since the speed of flow lies below the speed of sound, material abrasion is reduced, and the noise level is lower

Sizing procedure

- 1. Calculate the steam mass flow m based on the amount of energy required Q_{100} , the steam pressure, and the steam temperature.
- 2. Determine whether the pressure ratio is in the sub- or supercritical range.
- 3. Determine the k_{vs} value based on the steam mass flow and the steam pressure.

 $\dot{m} = \frac{Q_{100} \cdot 3600}{}$ $\frac{p_1 - p_3}{100\%}$ - 100% Steam mass flow Pressure ratio = r_{p_1} p₁

Calculation of k_{vs} value for steam

$$\frac{p_1 - p_3}{p_1} \cdot 100 \% < 42 \%$$

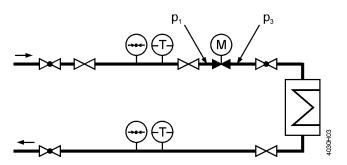
Pressure ratio < 42 % subcritical

$$k_{vs} = 4.4 \cdot \frac{\dot{m}}{\sqrt{p_3 \cdot (p_1 - p_3)}} \cdot k$$

Q₁₀₀ = rated capacity in kW

Subcritical range

- r_{p1} = specific heat capacity of steam in kJ/kgK
- p₁ = absolute pressure at the valve inlet in kPa (prepressure)
- = absolute pressure at the valve outlet in kPa p_3
- = steam mass flow in kg/h m
- = factor for superheating the steam = 1 + 0.0012 x ΔT (for saturated steam, k = 1) k
- ΔT = temperature spread in K of saturated steam and superheated steam


(not recommended) $k_{vs} = 8.8 \cdot \frac{\dot{m}}{p_1} \cdot k$

Pressure ratio ≥ 42 % supercritical

 $\frac{p_1 - p_3}{100 \%} \cdot 100 \% \ge 42 \%$

Supercritical range

 p_1

Note The level of absolute pressure p_1 at the value inlet must be at least such that the absolute pressure p_3 at the value outlet is higher than the atmospheric pressure.

Notes on the supercritical range

When there is a pressure ratio $(p_1 - p_3) / p_1 > 0.42$, the flow passing through the narrowest section of the valve reaches the speed of sound. This can lead to higher noise levels. A throttling system operating at a lower noise level (multistage pressure reduction, damping throttle by the outlet) alleviates the problem.

Subcritical < 42 %

- Steam-controlled heat transfer medium without condensation
- Shutoff valve on the steam side of condensation-controlled heat transfer media

Supercritical ≥ 42 %

Recommendation for

differential pressure

 Δp_{max}

- Steam humidifier
 - Steam-controlled heat transfer medium with condensation in the heat exchanger

For saturated and superheated steam, the differential pressure Δp_{max} across the valve should be as close as possible to the critical pressure ratio.

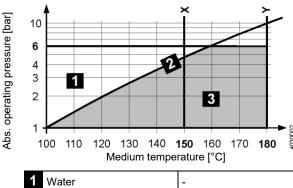


Chart example: The chart of the selected valve must be observed. The detailed diagrams for the valve lines can be found in the respective data sheets.

X and Y: Suitable actuators, depending on the 2-port valve

Water vapor table

2Wet steamTo be avoided3Saturated steamPermissible operating
range

Water vapor table for the saturated state (pressure table)

Pres	sure	Temperature	Spec. volume	Spec. volume	Density steam	Enthalpy water	Enthalpy	Heat of
		_	water	steam			steam	vaporization
p [kDo]	p [bor]	T	V' [dm³/kg]	V"	ρ" [[(α/m ³]	h'	h"	r [k]/ka]
[kPa]	[bar]	[°C]		[m ³ /kg]	[kg/m ^{3]}	[kJ/kg]	[kJ/kg]	[kJ/kg]
1 2	0.010 0.020	6.9808 17.513	1.0001 1.0012	129.20 67.01	0.007739 0.01492	29.34 73.46	2514.1 2533.6	2485.0 2460.2
2	0.020	24.100	1.0012	45.67	0.02190	101.00	2545.6	2400.2 2444.6
4	0.030	28.983	1.0040	34.80	0.02873	121.41	2554.5	2433.1
5	0.050	32.898	1.0052	28.19	0.03547	137.77	2561.6	2423.8
6	0.060	36.183	1.0064	23.74	0.04212	151.50	2567.5	2416.0
7	0.070	39.025	1.0074	20.53	0.04871	163.38	2572.6	2409.2
8	0.080	41.534	1.0084	18.10	0.05523	173.86	2577.1	2403.2
9	0.090	43.787	1.0094	16.20	0.06171	183.28	2581.1	2397.9
10	0.10	45.833	1.0102	14.67	0.06814	191.83	2584.8	2392.9
20	0.20	60.086	1.0172	7.650	0.1307	251.45	2609.9	2358.4
30	0.30	69.124	1.0223	5.229	0.1912	289.30	2625.4	2336.1
40	0.40	75.886	1.0265	3.993	0.2504	317.65	2636.9	2319.2
50	0.50	81.345	1.0301	3.240	0.3086	340.56	2646.0	2305.4
60	0.60	85.954	1.0333	2.732	0.3661	359.93	2653.6	2293.6
70	0.70	89.959	1.0361	2.365	0.4229	376.77	2660.1	2283.3
80 90	0.80	93.512 96.713	1.0387	2.087	0.4792	391.72	2665.8	2274.0
	0.90		1.0412	1.869	0.5350	405.21	2670.9	2265.6
100 150	1.0 1.5	99.632 111.37	1.0434 1.0530	1.694 1.159	0.5904 0.8628	417.51 467.13	2675.4 2693.4	2257.9 2226.2
200	1.5 2.0	120.23	1.0608	0.8854	1.129	407.13 504.70	2706.3	2220.2
250	2.0	127.43	1.0675	0.7184	1.392	535.34	2716.4	2181.0
300	3.0	133.54	1.0735	0.6056	1.651	561.43	2724.7	2163.2
350	3.5	138.87	1.0789	0.5240	1.908	584.27	2731.6	2147.4
400	4.0	143.62	1.0839	0.4622	2.163	604.67	2737.6	2133.0
450	4.5	147.92	1.0885	0.4138	2.417	623.16	2742.9	2119.7
500	5.0	151.84	1.0928	0.3747	2.669	640.12	2747.5	2107.4
600	6.0	158.84	1.1009	0.3155	3.170	670.42	2755.5	2085.0
700	7.0	164.96	1.1082	0.2727	3.667	697.06	2762.0	2064.9
800	8.0	170.41	1.1150	0.2403	4.162	720.94	2767.5	2046.5
900	9.0	175.36	1.1213	0.2148	4.655	742.64	2772.1	2029.5
1'000	10	179.88	1.1274	0.1943	5.147	762.61	2776.2	2013.6
1'100	11	184.07	1.1331	0.1774	5.637	781.13	2779.7	1998.5
1'200	12	187.96	1.1386	0.1632	6.127	798.43	2782.7	1984.3
1'300	13	191.61	1.1438	0.1511	6.617	814.70	2785.4	1970.7
1'400	14	195.04	1.1489	0.1407	7.106	830.08	2787.8	1957.7
1'500	15	198.29	1.1539	0.1317	7.596	844.67	2798.9	1945.2
1'600	16	201.37	1.1586	0.1237	8.085	858.56	2791.7	1933.2
1'700	17 19	204.31	1.1633	0.1166 0.1103	8.575 9.065	871.84 884.58	2793.4	1921.5 1910.3
1'800 1'900	18 19	207.11 209.80	1.1678 1.1723	0.1103	9.065	884.58 896.81	2794.8 2796.1	1899.3
2'000	20	212.37	1.1766	0.09954	10.05	908.59	2797.2	1888.6
2'500	20 25	223.94	1.1972	0.07991	12.51	961.96	2800.9	1839.0
3'000	30	233.84	1.2163	0.06663	15.01	1008.4	2802.3	1793.9
4'000	40	250.33	1.2521	0.04975	10.10	1087.4	2800.3	1712.9
5'000	50	263.91	1.2858	0.03743	25.36	1154.5	2794.2	1639.7
6'000	60	275.55	1.3187	0.03244	30.83	1213.7	2785.0	1571.3
7'000	70	285.79	1.3513	0.02737	36.53	1267.4	2773.5	1506.0
8'000	80	294.97	1.3842	0.02353	42.51	1317.1	2759.9	1442.8
9'000	90	303.31	1.4179	0.02050	48.79	1363.7	2744.6	1380.9
10'000	100	310.96	1.4526	0.01804	55.43	1408.0	2727.7	1319.7
11'000	110	318.05	1.4887	0.01601	62.48	1450.6	2729.3	1258.7
12'000	120	324.65	1.5268	0.01428	70.01	1491.8	2689.2	1197.4
13'000	130	330.83	1.5672	0.01280	78.14	1532.0	2667.0	1135.0
14'000	140	336.64	1.6106	0.01150	86.99	1571.6	2642.4	1070.7
15'000	150	342.13	1.6579	0.01034	96.71	1611.0	2615.0	1004.0
20'000	200	365.70	2.0370	0.005877	170.2	1826.5	2418.4	591.9
22'000	220	373.69	2.6714	0.003728	268.3	2011.1	2195.6	184.5
22'120	221.2	374.15	3.17	0.00317	315.5	2107.4	2107.4	0

2.10 Calculation examples for water, heat transfer oil and steam


2.10.1 Example for water: Heater with pressure and variable volumetric flow

HVAC plant using a header with pressure, header with variable					Air heating coil 1	
volumetric flow		1			Flow Return Supply air Outside air	60 °C 40 °C 20 °C 10 °C
			121		Output Δp_{VR} Δp_{piping}	510 kW 34 kPa 11 kPa
			↓¥		Other plant data	
	¥	φ	Ľ	4030H01	Pressure class Control Operating voltage	PN 16 DC 010 V AC 24 V

I	[
1	Determine the basic hydraulic circuit	Injection circuit with 2-port valve
2	Determine Δp_{VR} or Δp_{MV}	With pressure and variable volumetric flow $\rightarrow \Delta p_{VR}$ $\Delta p_{VR} = 34 \text{ kPa}$
3	Determine Δp_{V100}	With pressure and variable volumetric flow $\Rightarrow \Delta p_{V100} \ge \frac{\Delta p_{VR}}{2}$ $\Delta p_{V100} = 17 \text{ kPa}$
4	Determine the volumetric flow V_{100}	$\dot{V}_{100} = \frac{Q_{100}}{1.163 \cdot \Delta T} = \frac{510 kW}{1.163 \cdot (60 ^{\circ}C - 40 ^{\circ}C)} = 21.9 m^3 / h$
5	Determine the k _{vs} value	$\frac{Flow chart}{Use the flow chart to determine the k_{vs} value:}$ 1. $k_{vs} value: 40 m^3/h$ 2. $k_{vs} value: 63 m^3/h$ $\frac{By way of calculation}{\sqrt{\frac{\Delta p_{V100}}{100}}} = \frac{21.9 m^3 / h}{\sqrt{\frac{17 \ kPa}{100}}} = 53.2 m^3 / h$ k value $\ge 0.85 \cdot 53.2 m^3/h = 45.2^3/h \Rightarrow k_{vs} value = 40 m^3/h \text{ or } 63 m^3/h$ 1. $k_{vs} value: 40 m^3/h$ 2. $k_{vs} value: 63 m^3/h$
6	Check the resulting differential pressure Δp_{V100}	First k _{vs} value: $\Delta p_{V100} = 100 \cdot \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2 = 100 \cdot \left(\frac{21.9 m^3 / h}{40 m^3 / h}\right)^2 = 30.0 kPa$ Second k _{vs} value: $\Delta p_{V100} = 100 \cdot \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2 = 100 \cdot \left(\frac{21.5 m^3 / h}{63 m^3 / h}\right)^2 = 12.1 kPa$
7	Select suitable line of valves	 2-port valve (resulting from the basic hydraulic circuit) Flanged (specified by the planner) PN class 16 (specified by the planner) Nominal size DN (resulting from the selected valve) Maximum medium temperature: 60 °C Type of medium: Water → 1st selection: VVF47.50 2nd selection: VVF47.65

8	Check the valve authority P _v (control stability)	Check p_v using the resulting differential pressure Δp_{v100} : $P_v = \frac{\Delta p_{v100}}{\Delta p_{vR}} = \frac{30.0 kPa}{34 kPa} = 0.88$ First k_{vs} value: $P_v = \frac{\Delta p_{v100}}{\Delta p_{vR}} = \frac{12.1 kPa}{34 kPa} = 0.36$ Second k_{vs} value: \Rightarrow Lower valve authority $p_v \Rightarrow k_{vs}$ value = 63 m ³ /h	
9	Select the actuator	Select actuator according to the following criteria: Operating voltage Positioning signal Positioning time Spring return function Auxiliary functions	
10	Check the working ranges	Differential pressure $\Delta p_{max} > \Delta p_{v0}$ Closing pressure $\Delta p_s > H_0$	
11	Select valve and actuator	Type of valve: VVF47.65 Type of actuator:According to the table	

2.10.2 Example for water: Heater with low differential pressure without main pump

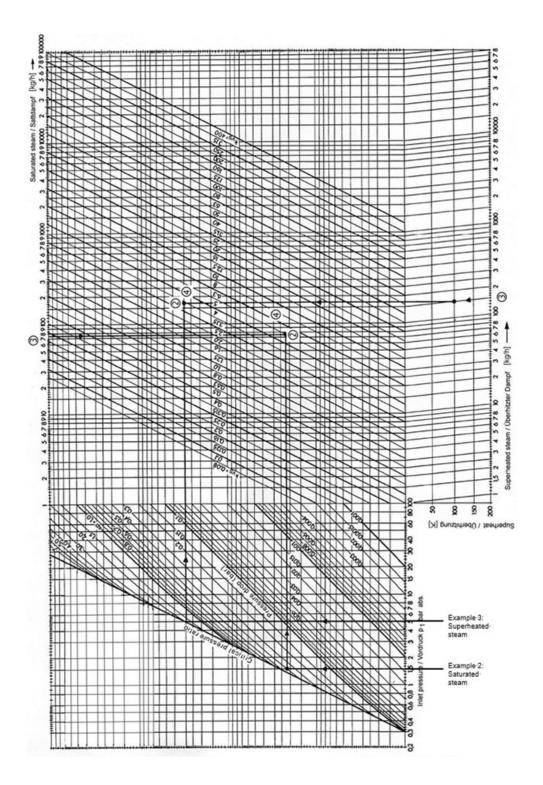
1	Determine the basic hydraulic circuit	Mixing circuit	
2	Determine Δp_{VR} or Δp_{MV}	Header with low differential pressure and variable volumetric flow $ ightarrow \Delta p_{MV}$	
		$\Delta p_{MV} = \Delta p_{piping} + \Delta p_{heat meter} = 3 kPa + 8 kPa = 11 kPa$	
3	Determine Δp_{V100}	Header with low differential pressure and variable volumetric flow $\rightarrow \Delta p_{V100} \ge \Delta p_{MV}$ $\Delta p_{V100} = 11 \text{ kPa}$	
4	Determine the volumetric flow V_{100}	$\dot{V}_{100} = \frac{Q_{100}}{1.163 \cdot \Delta T} = \frac{700 kW}{1.163 \cdot (60 ^{\circ}C - 45 ^{\circ}C)} = 40 m^3 / h$	
5	Determine the k _{vs} value	$\frac{Flow chart}{Use the flow chart to determine the kvs value:kvs value: 120 m3/h\frac{By way of calculation}{\sqrt{\frac{\Delta p_{1100}}{100}}} = \frac{40 m^3 / h}{\sqrt{\frac{11 kPa}{100}}} = 121 m^3 / hkvs value ≥ 0.85 • 121 m3/h = 102 m3/h → kvs value = 100 m3/h$	

		k _{vs} value: 100 m³/h
6	Check the resulting differential pressure Δp_{V100}	$\Delta p_{V100} = 100 \cdot \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2 = 100 \cdot \left(\frac{40 m^3 / h}{100 m^3 / h}\right)^2 = 16 kPa$
7	Select suitable line of valves	 2-port valve (resulting from the basic hydraulic circuit) Flanged (specified by the planner) PN class 16 (specified by the planner) Nominal size DN (resulting from selected valve) Maximum medium temperature: 60 °C Type of medium: Water → Selection: VXF47.80
8	Check the valve authority P_v (control stability)	Check P _V using the resulting differential pressure Δp_{V100} : $P_V = \frac{\Delta p_{V100}}{\Delta p_{V100} + \Delta p_{MV}} = \frac{16 \text{kPa}}{16 \text{kPa} + 11 \text{kPa}} = 0.59$
9	Select the actuator	Select actuator according to the following criteria: • Operating voltage • Positioning signal • Positioning time • Spring return function • Auxiliary functions
10	Check the working ranges	Differential pressure $\Delta p_{max} > \Delta p_{V0}$ Closing pressure $\Delta p_s > H_0$
11	Select valve and actuator	Type of valve: VXF47.80 Type of actuator: According to the table

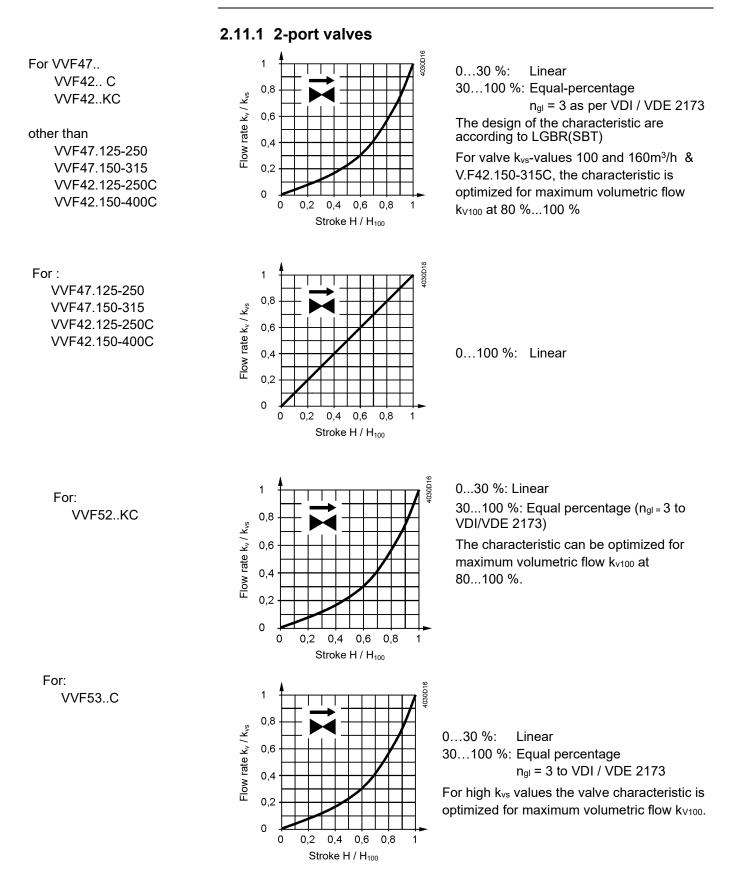
2.10.3 Example for heat transfer oil

As outlined in chapter "Error! Reference source not found.", page Error! Bookmark not defined., when sizing a valve, the density ρ , the specific heat capacity c, and the kinematic viscosity v must be taken into consideration. Also, to ensure correct and efficient operation, a closer look should be taken at the controlled mode and the startup mode.

Properties	
Description	Mobiltherm 603
Max. permissible flow temperature	285 °C
Max. permissible film temperature	315 °C
Kinematic viscosity at 20 °C	50.5 mm²/s
Kinematic viscosity at 100/200/300 °C	4.2/1.2/0.58 mm ² /s
Density at 20 °C	859 kg/m ³
Density at 100/200/300 °C	811/750/690 kg/m ³
Specific heat capacity c at 20 °C	1.89 kJ/kgK
Specific heat capacity c at 100/200/300 °C	2.18/2.54/2.91 kJ/kgK

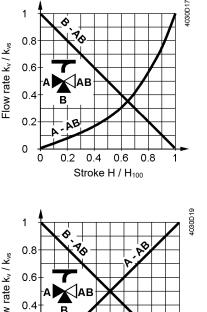

When planning and commissioning a plant or when sizing valves, the suppliers' specifications must be observed. The experience and know-how of the suppliers help select the right type of heat transfer oil.

Plant data	$\begin{array}{llllllllllllllllllllllllllllllllllll$	heat exchanger	
Operating data	Controlled mode when heated up	Heating up mode	
Required capacity Q	Q ₁₀₀ = 55 kW	Q is undefined	
Temperature spread ΔT	50 K	-	
Determine the volumetric flow V_{100}	$\dot{V}_{100} = \frac{\dot{Q}_{100} \cdot 3600}{c \cdot \rho \cdot \Delta T}$ $\dot{V}_{100} = \frac{55 \text{kW} \cdot 3600}{2,54 \text{kJ/kgK} \cdot 750 \text{kg/m}^3 \cdot 50 \text{K}}$ $\dot{V}_{100} = 2,08 m^3 / h$	-	
Differential pressure ∆p _{∨100}	With pressure and variable volumetric flow \rightarrow $\Delta p_{V100} \geq \frac{\Delta p_{VR}}{2}$ \rightarrow $\Delta p_{V100} = 25 \text{ kPa } (0.25 \text{ bar})$	Must be calculated	
Flow temperature T _{VL}	200 °C	Approx. 20 °C	
Kinematic viscosity v	At 200 °C: 1.2 mm²/s	50.5 mm²/s	
Correction factor F _R	At 200 °C: 1 Kinematic viscosity υ <10 mm²/s	At 20 °C: 0.75 Interpolated according to the correction factor table on page 23	
Determine the k _{vs} value	$k_{v} = \frac{\dot{V}100}{F_{R}} \cdot \frac{1}{\sqrt{\frac{\Delta p100}{100}}}$ $F_{R} = 1$ $k_{v} = \frac{\dot{V}_{100}}{\sqrt{\frac{\Delta p_{V100}}{100}}} = \frac{2,08m^{3}/h}{\sqrt{\frac{25kPa}{100}}} = 4,16m^{3}/h$ $k_{vs}\text{-Wert} \ge 0.85 \cdot 4.16 \text{ m}^{3}/\text{h} = 3.54 \text{ m}^{3}/\text{h}$ $-> k_{vs} \text{ value} = 5 \text{ m}^{3}/\text{h}$	-	
Volumetric flow resulting from the selected $k_{\nu s}$ value	$\dot{V}_{100} = K_{vs} \cdot F_{R} \cdot \sqrt{\frac{\Delta p_{V100}}{100}}$ $\dot{V}_{100} = 5 \text{ m}^{3} / \text{h} \cdot 1 \cdot \sqrt{\frac{25 \text{ kPa}}{100}}$ $\dot{V}_{100} = 2.5 \text{ m}^{3} / \text{h}$	$\dot{V}_{100} = k_{vs} \cdot F_{R} \cdot \sqrt{\frac{\Delta p_{V100}}{100}}$ $\dot{V}_{100} = 5 \text{ m}^3 / \text{h} \cdot 0.75 \cdot \sqrt{\frac{25 \text{ kPa}}{100}}$ $\dot{V}_{100} = 1.9 \text{ m}^3 / \text{h}$ $\Rightarrow \text{ In the heating up phase, the volumetric flow is reduced by 5 %!}$	
Select the 2-port valve	VVF63.25-5		


2.10.4 Example for steam

As outlined in chapter "Error! Reference source not found.", page Error! Bookmark not defined., it must be determined first whether a supercritical or subcritical pressure ratio exists in the plant.

Example 1: By way of calculation		Saturated steam= 151.8 °CPrepressure p_1 = 500 kPa (5 bar)Steam mass flow \dot{m} = 460 kg/h		
	Given	Pressure ratio = 30 %	Pressure ratio ≥ 42 % (supercritical permitted)	
		Subcritical pressure ratio	Supercritical pressure ratio	
	Required	k_{vs} , valve type	k _{vs} , valve type	
	Solution	$p_3 = p_1 - \frac{30\% \cdot p_1}{100\%}$		
		p ₃ = 500kPa − 30% · 500 kPa = 350 kPa (3.5bar) 100%		
		$k_v = 4.4 \cdot \frac{460 \text{ kg/h}}{\sqrt{350 \text{ kPa} \cdot (500 \text{ kPa} - 350 \text{ kPa})}} \cdot 1$	$k_v = 8.8 \cdot \frac{460 \text{ kg/h}}{500 \text{ kPa}} \cdot 1$	
		$k_v = 8.83 \text{ m}^3/\text{h}$	k _v = 8.09 m ³ /h	
	Selected	k_{vs} = 10 m ³ /h \rightarrow VVF53.25-10	$k_{vs} = 8 \text{ m}^3/\text{h} \rightarrow VVF53.25-8$	
Example 2: With chart	Given	Saturated steam= 111.4 °CPrepressure p_1 = 150 kPa (1.5 bar)Steam mass flow m= 75 kg/hDifferential pressure= 40 kPa (0.4 bar)		
	Required	k _{vs} , valve type		
	Solution	 Vertical line upward to an absolute prepressure p₁ = 1.5 bar (150 kPa). Horizontal line to the right to the point of intersection 1.5 bar (15 kPa) and differential pressure 0.4 bar (40 kPa). Vertical line downward to 75 kg/h. Point of intersection k_{vs} value Select available k_{vs} value of VVF valve lines. Selected kvs value: 5 m³/h. 		
	Selected	k_{vs} value: 5 m ³ /h \rightarrow VVF53.25-5		
Example 3: With chart	Given	Superheated steam= 251.8 °CSaturated steam= 151.8 °CSuperheating ΔT = 100 KPrepressure p_1 = 500 kPa (5 bar)Steam mass flow m= 150 kg/hDifferential pressure= 200 kPa (2 bar)		
	Required	k _{vs} , valve type		
	Solution	 Vertical line upward to an absolute prepressure p₁ : Horizontal line to the right to the point of intersectio pressure 2 bar (200 kPa). Scale "Superheated steam": Along the line at 150 k 100 K, then the vertical line upward. Point of intersection k_{vs} value Select available k_{vs} value of VVF valve lines. Selected kvs value: 3.15 m³/h. k_{vs} value: 3.15 m³/h. 	n 5 bar (500 kPa) and differential	
	Selected	N _{VS} value. 3. 13 111 /11 7 VVF33. 13-3.2		


2.11 Valve characteristics

2.11.2 3-port valves

For VXF47.. VXF42..C other than VXF42.125-250C VXF42.150-400C

For : VXF42.125-250C VXF42.150-400C

Through port A-AB

0...30 %: Linear 30...100 %: Equal-percentage n_{gl} = 3 as per VDI / VDE 2173

For valve k_{vs} -values $\geq 100m^3/h$, the characteristic is optimized for maximum volumetric flow k_{V100} at 80 %...100 %

Bypass B-AB

0...100 %: Linear

Flow rate k_v / k_{vs} 0.2 0 0 0.2 0.4 06 08 Stroke H / H₁₀₀

Through port A-AB 0... 100 %: Linear **Bypass B-AB** 0... 100 %: Linear

Mixing: Flow from port A and port B to port AB Diverting: Flow from port AB to port A and port AB

2.12 Operating pressure and medium temperature

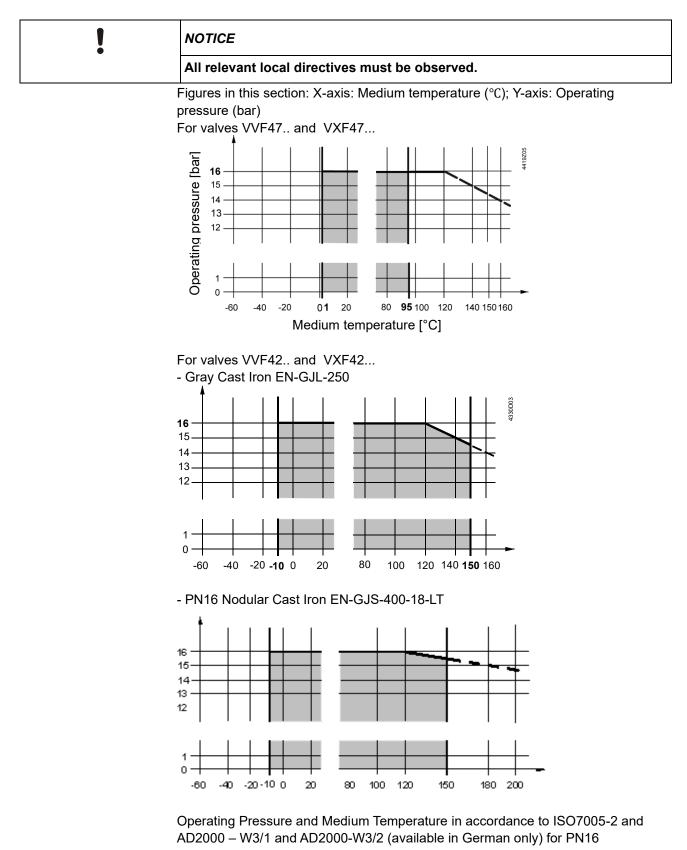
2.12.1 ISO 7005 and EN 1092 – a comparison

ISO 7005 and EN 1092 cover PN-classified, round flanges for pipes, valves, plain fittings and accessories, plus their dimensions and tolerances, categorized according to different types of materials. Both standards also contain the assignment of pressures and medium temperatures.

The connecting dimensions, flange and face types plus descriptions conform to the relevant ISO 7005 standards.

- ISO 7005, part 1: Steel flanges
- ISO 7005, part 2: Cast iron flanges
- ISO 7005, part 3: Flanges made of copper alloys

Since the valves covered by this document are used throughout the world, the international standard ISO 7005 was selected as a basis. The information given below explains the differences between ISO 7005 and EN 1092.

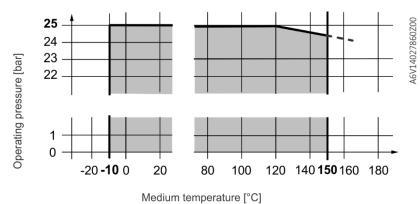

EN 1092: Part 2, cast iron flanges:

In terms of flanges of the same PN class, this standard refers to ISO 7005-2 and ISO 2531. Flange types and connecting dimensions are compatible with the same DN and PN class of ISO 7005 and ISO 2531.

• Pressure-temperature assignments: There are no differences between EN 1092-2 and ISO 7005-2

2.12.2 PN 16 valves with flanged connections

Operating pressure and operating temperatures according to ISO 7005, EN 1092 and EN 12284

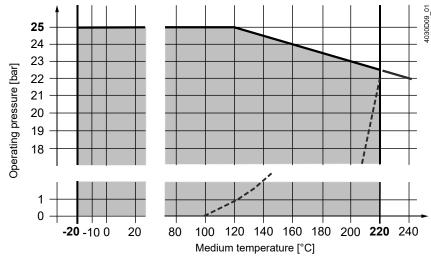


2.12.3 PN 25 valves with flanged connections

!	NOTICE
	All relevant local directives must be observed.
Figures in this section: X-axis: Medium temperature (°C); Y-axis: Operating	

For valves VVF52..KC

pressure (bar)



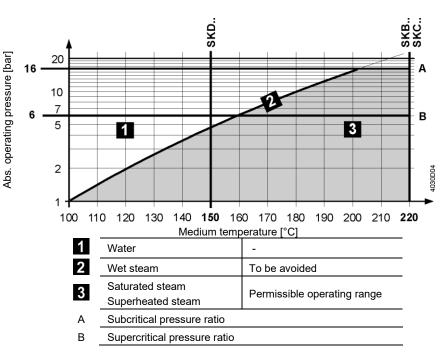
Operating pressure and medium temperature in accordance to ISO 7005, EN 1092 and EN 12284.

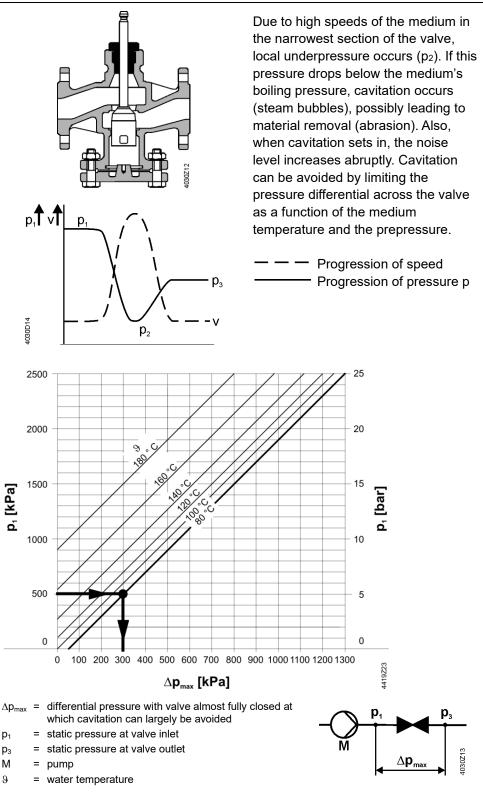
Operating pressure and medium temperature

Fluids

with V..F53..C

- --- Curve for saturated steam; steam forms below this line
- Operating pressure according to EN 1092, valid for 2-port valves with blank flange

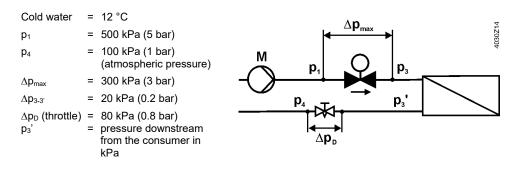

Operating pressure and operating temperatures according to ISO 7005, EN 1092 and EN 12284


All relevant local directives must be observed

Saturated steam

Notes

Superheated steam with VVF53..C



Example for low-temperature hot water

From the chart above it can be seen that with the valve almost fully closed, the maximum permissible differential pressure Δp_{max} is 300 kPa (3 bar).

Example for cold water

Spring water cooling as an example for avoiding cavitation:

Note:

To avoid cavitation in the case of cold water circuits, it must also be made certain that there is sufficient static counter-pressure at the valve's outlet. This can be ensured by installing a throttling valve downstream from the heat exchanger, for example. In that case, the maximum pressure drop across the valve should be selected according to the 80 °C curve in the flow chart above on page 18.

2.14 Medium quality and medium treatment

All relevant local directives must be observed whenever it comes to water quality, corrosion or contamination.

2.14.1 Water

Note:

- Water treatment as per VDI 2035 to avoid boiler scale and damage due to corrosion on the water side
- The requirements of DIN EN 12953-10 should be observed
- Local guidelines and directives should be observed

Planning

Install a strainer (dirt trap).

Installation and commissioning

- The company making the installation is responsible for the water quality in HVAC plants
- Before filling a hydraulic HVAC circuit with water, the installer must observe the specifications of suppliers regarding water quality. If such specifications or regulations are not observed, severe damage to the plant can occur
- When commissioning a plant, the company that made the installation is obliged to write a commissioning report including information about water quality and filling (plant volume) and, if necessary, about water treatment and the additives used

Recommendation

Keep a plant record.

Maintenance and service

The installer should check hydraulic HVAC circuits at least once a year.

Before adding water to a hydraulic HVAC circuit, the installer must observe the specifications of suppliers regarding water quality (water treatment as per VDI 2035). If such specifications or regulations are not observed, severe damage to the plant can occur.

When adding water at a later stage, the company that made the installation is obliged to write a commissioning report including information about water quality and the filling (plant volume) and, if necessary, about water treatment and the additives used.

Recommendation

To prevent boiler scale and damage resulting from corrosion, the water quality in closed plants must be checked at regular intervals. The plant record must always be kept up to date.

2.14.2 Deionized, demineralized water and super-clean water

Note:

These media have an impact on valve selection (material of O-rings, gaskets, plug/seat, and valve body). Compatibility must be checked.

Deionized water	Demineralized water	Super-clean water			
	have been removed	Intensely treated water with a high specific resistance and containing no organic substances			

To avoid corrosion and to ensure a long service life of the valves, gaskets and plugs, the following limits must be observed:

- Oxygen: <0.02 mg/l
- pH value: 8.2...8.5
- Electric conductance: <5 μSi
- Sum of alkaline earths: <0.0051 mmol/l
- Hardness:<0.03 dH

Planning

- The media must be approved by the supplier for use in HVAC plants
- Install a strainer (dirt trap)

Installation and commissioning

- The company making the installation is responsible for the quality of the media used
- Before filling a hydraulic HVAC circuit with a medium, the installer must observe the supplier's specification. If such specifications or regulations are not observed, severe damage to the plant can occur
- When commissioning a plant, the company that made the installation is obliged to write a commissioning report including information about medium quality and filling (plant volume) and, if necessary, about water treatment and additives used

Recommendation

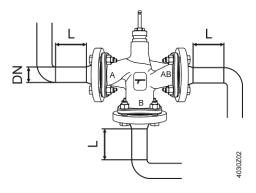
Keep a plant record.

Maintenance, service

The installer should check hydraulic HVAC circuits at least once a year.

Recommendation

The quality of the medium used in closed HVAC plants must be checked at regular intervals. The plant record must always be kept up to date.


2.15.1 Strainer (dirt trap)

Open and closed HVAC plants require a strainer (dirt trap). This improves the quality of the water, ensures proper functioning of the valve, and a long service life of the HVAC plant with its components.

2.15.2 Avoiding flow noise

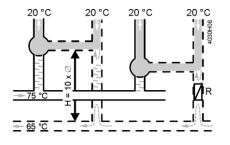
Recommendation

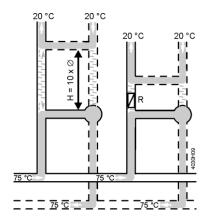
To reduce flow noise, abrupt reductions in pipe diameters, tight pipe bends, sharp edges or reductions in the vicinity of valves should be avoided. A settling path should be provided.

• L ≥ 10 x DN, at least 0,4 m

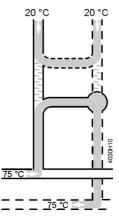
Also, the flow must be free from cavitation (refer to chapter "2.13 Cavitation", page 38).

2.15.3 Avoiding false circulation


When 3-port valves in HVAC plants are fully closed, false circulation can occur when hot water rises or when water is pulled away near rectangular pipe connections.

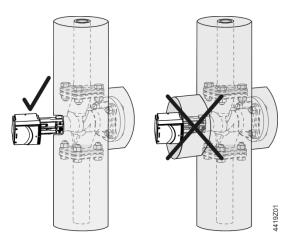

Note:

False circulation can be avoided by proper planning – with almost no extra cost – but remedy is usually very costly in existing plants.


Measures against false circulation

- Observe guide value for the water speed: 0.5...1 m/s. The lower the water speed, the smaller the risk that the diverted flow pulls water from the critical piping section. If required, balancing valves can be installed to improve flow conditions
- Observe a certain distance between bypass and collector/header or short-circuit: H ≥ 10 x pipe dia., minimum 400 mm
- or
- Installation of a check valve or gravity brake R with small spring pressure in the critical piping section, aimed at ensuring a minimum flow in the opening range

• Welded elbows.



2.15.4 Thermal insulation

Recommendation Insulated pipes and valves save energy.

Actuators must never be insulated. This is to make certain that heat produced by the actuator can be dissipated, thus preventing overheating.

Thermal insulation of pipes and valves conforming to EnEV 2009

Recommendation 1)

#	Type of pipes/valves	Minimum thickness of thermal insulation				
1	Inside diameter up to 22 mm	20 mm				
2	Inside diameter 2235 mm	30 mm				
3	Inside diameter 35…100 mm	Same as inside diameter				
4	Inside diameter > 100 mm	100 mm				
5	Through walls and ceilings, at pipe crossings and connections, at central network distributors	½ of requirements of # 1…4				
6	Pipes of central heating systems which, after January 31, 2002, were installed between heated rooms of different users	¹ / ₂ of requirements of # 14				
7	Pipes according to # 6 in the floor's structure	6 mm				
8	Cooling energy distribution/cold water pipes and valves of room ventilation and air conditioning systems	6 mm				

¹⁾ Applies to a heat conductance of 0.035 W/(m·K)

When using materials with a heat conductance other than 0.035 W/($m\cdot K$), the minimum thickness of the insulating layers must be appropriately adapted. For the conversion and heat conductance of insulating material, the calculation methods and data applied by established technical rules must be used.

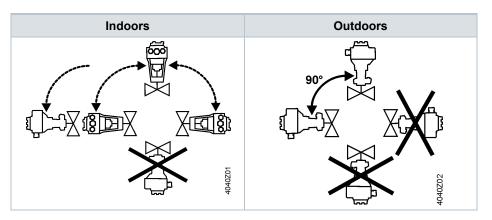
2.16 Warranty

The engineering data listed in chapter "Type summary and equipment combinations" on page 12 are ensured only when the valves are used in connection with the specified Siemens actuators.

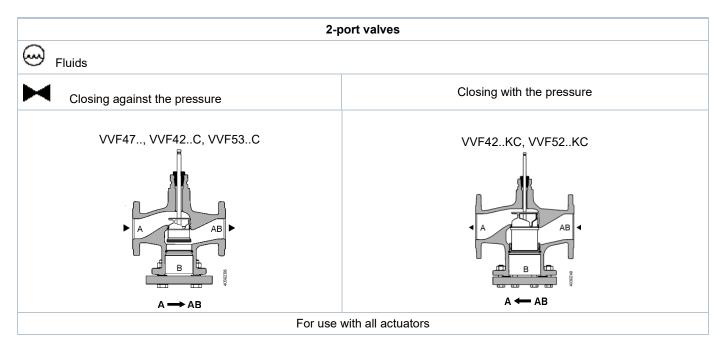
Note:

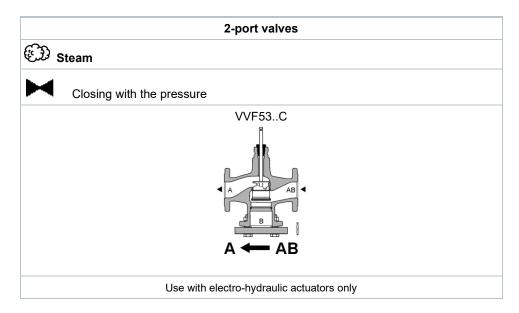
If the valves are used in combination with actuators supplied by thirds, proper functioning must be ensured by the user himself and Siemens Building Technologies will assume no liability.

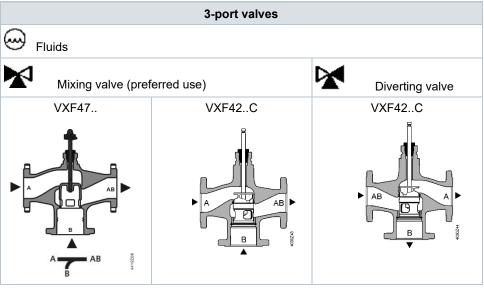
3 Handling3.1 Mounting and installation


Note:

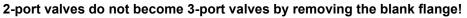
The valves must be installed free from distortion.


3.1.1 Mounting positions


Mounting positions apply to both 2- and 3-port valves.



3.1.2 Direction of flow for fluids and steam

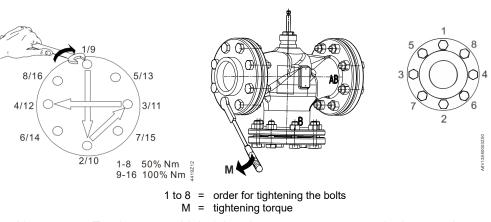

For general illustration and further details, refer to chapter "4.3 Technical and mechanical design", page11.

3.1.3 Flanges

To ensure that flanges are correctly connected, the nominal, maximum and minimum tightening torques must be observed. They depend on the strength and size of the bolts and nuts, the material of the flanges, the PN class, the flange gaskets used and the medium in the hydraulic system.

The tightening torques also depend on the specification of the gasket supplier and must be observed, using a torque wrench.

To determine the right tightening torques, refer to the suppliers' specifications. According to EN 1515-1, the selection of materials for bolts and nuts is also dependent on the PN class, the temperatures, and other operating conditions, such as the type of medium.


Recommendation

Use a torque wrench.

Procedure

- 1. Clean the flanges.
- 2. Place the gaskets between the flanges.
- 3. Fit the bolts, washers and nuts and tighten them by hand.
- 4. Tighten the bolts crosswise in 2 steps as shown below (M = tightening torque):
 - Step 1: 50 % M
 - Step 2: 100 % M

Observe the following table "Guide values for tightening torques"

5. When the operating temperature is reached, retighten the bolts.

Guide values for tightening torques

Max. tightening torque [Nm]										
DN	50	65	80	100	125	150				
PN 16	70	70	70	120	120	200				
PN25	-	120	120	210	300	300				

3.1.4 Thermal

PN 25

insulation

Refer to chapter "Thermal insulation", page 33.

3.2.1 Commissioning

The valve may be put into operation only if actuator and valve are correctly assembled.

Note:

Ensure that actuator stem and valve stem are rigidly connected in all positions.

Function check

Valve	Through port A→AB	Bypass B→AB		
Valve stem extends	Closes	Opens		
Valve stem retracts	Opens	Closes		

3.2.2 Maintenance

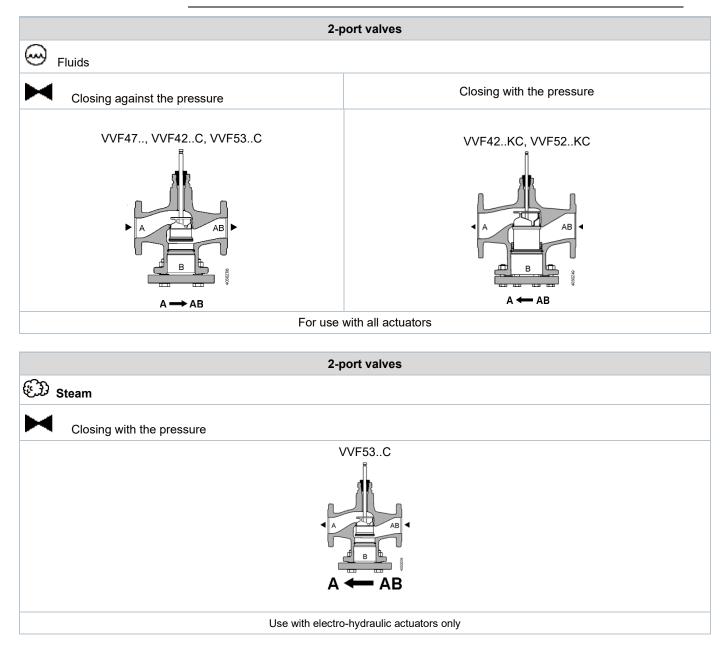
The valves are maintenance-free.

3.3 Disposal

The valve is considered an electronics device for disposal in terms of European Directive 2012/19/EU and may not be disposed of as domestic garbage.

- Disassemble the valve into individual parts prior to disposing of it and sort the individual parts by the various types of materials.
- Comply with all local and currently applicable laws and regulations.

4 Functions and control

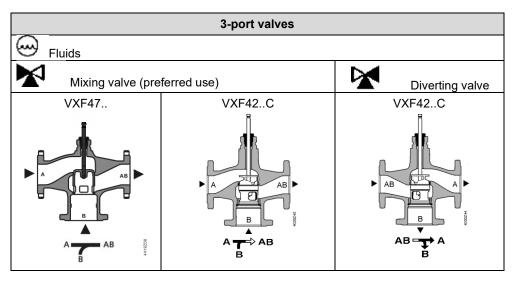

4.1 Selection of acting direction and valve characteristic

The valve's characteristic and acting direction (push to open, pull to open, normally open, normally closed) can't be selected.

4.2 Calibration

Calibration must be performed when valve and actuator are correctly assembled.

4.3 Technical and mechanical design

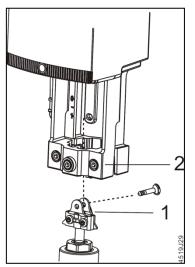


The illustrations below only show the valves' basic design; constructional features, such as the shape of plugs, may different.

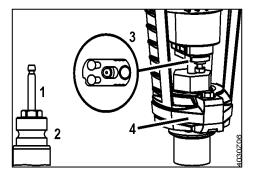
The VVF42..K valves use a pressure-compensated plug. This enables the same type of actuators to be used for the control of volumetric flow at higher differential pressures.

Note

2-port valves do not become 3-port valves by removing the blank flange!



4.3.1 Plug stop


The built-in plug stop ...

- supports secure guidance of the plug in all stroke positions
- prevents the head of the stem from immersing into the sealing gland, thus avoiding damage to the seal
- prevents loss of plug as long as no actuator is fitted

4.3.2 Valve stem, valve neck, coupling

The stem coupling (1) and neck coupling (2) ensures compatibility with Siemens large-stroke valves VVF47..., VXF47..., VVF42..C, or VXF42..C

- The diameter of the valve stem is 10 mm with all types of valves VVF42.. or VXF42...
- The same valve stem design ensures compatibility with the actuators
- 1 Valve stem
- 2 Valve neck
- 3 Valve stem coupling
- 4 Valve neck coupling

4.3.3 Converting a 2-port to a 3-port valve

It is not possible to convert a 2-port valve to a 3-port valve.

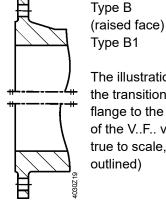
Note: 2-port valves do not become 3-port valves by removing the blank flange!

4.3.4 Converting a 3-port to a 2-port valve

It is not possible to convert a 3-port valve to a 2-port valve.

4.3.5 Flange types

Flanges, flange dimensions and flange connections conform to ISO 7005 and EN 1092 respectively.


Valve types

 2-port valves 	VVF47	VVF42, VVF42KC, VVF52KC,
		VVF53C
 3-port valves 	VXF47	VXF42

Flange type

Type 21 (integral flange) as per ISO 7005 is an integral component of a pressure device.

Type of flange and flange face

The illustration shows the transition from the flange to the valve body of the V..F.. valves (not true to scale, faces only outlined)

Gaskets

In the case of ISO 7005, the gaskets do not constitute part of the standard - in contrast to EN 1092.

5 Technical data

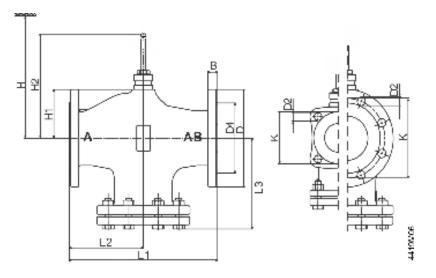
VVF47.. VXF47..

Funtional data	PN class	PN 16 to ISO 7268	3			
	Working pressure	To ISO 7005 within	n the permissible "Medium temperature"			
		range according to	o the diagram on page 25			
	Flow characteristic					
	through-port 030 %	Linear				
	30100 %	Equal percentage; n _{gl} = 3 to VDI/VDE 2173				
	bypass 0100 %	Linear				
	Leakage rate					
	through-port	00.1 % of kvs value to DIN EN 1349				
	bypass	0.52 % of kvs va	alue			
	Permissible media		temperature hot water, high temperature			
		hot water, water w	ith anti-freeze, brine;			
			water treatment to VDI 2035			
	Medium temperature	195℃				
	Rangeability Sv	DN 50150: >50				
	Nominal stroke	DN 5080: 20mm				
		DN 100150: 40mm				
Materials	Valve body	Grey cast iron EN-	-GJL-250			
	Stem	Stainless steel				
	Plug	Bronze or stainless steel				
	Sealing gland	O-ring: EPDM				
		Wiper ring: PTFE				
Dimensions/Weight	Refer to "Dimensions", page 45					
	Flange connections	To ISO 7005	I			
Environment	Operation	Class	3K5, 3Z11			
		Temperature	-1055°C			
		Rel. Humidity	595 % r.h.			
	Storage	Class	1K3 enhanced			
		Temperature	-1550 %			
		Rel. Humidity	<95 % r.h.			
	Transport	Class	2K3, 2M2			
		Temperature	-30+65°C			
		Rel. Humidity	<95 % r.h.			
Norms	PN Class	ISO 7268				
	Working pressure	ISO 7005				
	Flanges	ISO 7005				
	Length of flanged valves	DIN EN 558-1, Sei	ries 1			
	Valve flow characteristic	VDI 2035				
	Leakage rate	Throughport, bypa	ss according to EN 60534-4/ EN 1349			
	Water treatment	VDI 2015				
	Environment	Storage: IEC 6072	21-3-1			
		Transport: IEC 607	721-3-2			
		Operation: IEC 60	721-3-3			
	Environmental compatibility	ISO 14001 (Enviro	onment)			
		ISO 9001 (Quality))			
		SN 36350 (Enviror	nmentally compatible products)			
		Directive 2002/95/	EC(RoHS)			

	VXF42					
	PN class	PN 16				
	Connection	Flange				
	Operating pressure	See page 34				
	Valve characteristics 1)	See page 33				
	Lookago rata	Through port: 00.02 % of k _{vs} value				
Functional data	Leakage rate	Bypass: 0.52 % of k _{vs} value (k _{vs} ≥ 6.3)				
Functional data	Permissible media	See page 11				
	Medium temperature	-10150°C				
	Rangeability	To DN 40: > 50				
	Kangeability	From DN 50: >100				
	Nominal stroke	To DN 80: 20 mm				
		From DN 100: 40 mm				
	Valve body	DN25-DN100: HT250 which	•			
		DN125-DN150: QT400-18 w	hich equals to GJS 400-18			
	Blank flange	Same as valve body				
	Valve stem	Stainless steel				
	Seat	VVF42C, VXF42C: Machi	ned			
		VVF42KC: Stainless steel				
Materials	Plug	DN25 Brass DN32-DN150 Stainless stee				
		Brass				
		EPDM O-rings				
	Stem sealing gland	EPDM O-rings PTFE sleeve				
		silicon-free				
	Compensation sealing	Stainless steel				
	(VVF42KC only)	EPDM				
		Class	1K3			
	Storage	Temperature	-15+55°C			
	IEC 60721-3-1	Rel. humidity	595 % r.h.			
		Class	2K3, 2M2			
Envirionmental	Transport	Temperature	-30+65°C			
conditions	IEC 60721-3-2	Rel. humidity	<95 % r.h.			
	Operation	Class	3K5, 3Z11			
	Operation IEC 60721-3-3	Temperature	-15+55℃			
		Rel. humidity	595 % r.h.			
	Pressure Equipment Directive	PED 97/23/EC				
	Pressure-carrying accessories	According to article 1, sectio	n 2.1.4			
	Fluid group 2	PN 16				
	Without CE certification as per					
	article 3, section 3 (sound	≤ DN 50				
	engineering practice)					
	Category I, with CE certification	DN 65150				
	PN class	ISO 7268				
Standarda	Operating pressure	ISO 7005				
Standards	Flanges	ISO 7005				
	Length of flanged valves	DIN EN 558-1, line 1				
	Valve characteristic	VDI 2173				
	Leakage rate	Through port, bypass accord	ding to EN 60534-4 / EN			
	Water treatment	1349 VDI 2035				
	Water treatment		declaration (A6V10794205)			
	Environmental compatibility	The product environmental declaration (A6V10794205) contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit,				
	1	disposal).				

VVF52..KC

	VVF52KC										
	PN class	PN 25									
	Connection	Flange									
	Operating pressure	See page 34									
	Valve characteristics ¹⁾	See page 33									
	Leakage rate	Through port: 00.02 % of k _{vs} value									
Functional data	Permissible media	See page 11									
	Medium temperature	-10150 °C									
	Rangeability	To DN 40: > 50									
		From DN 50: >100									
	Nominal stroke	To DN 80: 20 mm									
		From DN 100: 40 mm									
	Valve body, blank flange	QT400-18L which equals to	EN-GJS-400-18-LT								
	Valve stem	Stainless steel									
	Seat	Stainless steel									
	Plug	Stainless steel									
	Stem sealing gland	Brass									
Materials		EPDM O-rings									
		PTFE sleeve									
		Silicon-free									
	Compensation sealing	Stainless steel									
		EPDM									
	Storage	Temperature	-15+55°C								
	IEC 60721-3-1	Rel. humidity	595 % r.h.								
Envirionmental	Transport	Temperature	-30+65°C								
conditions	IEC 60721-3-2	Rel. humidity	<95 % r.h.								
	Operation	Temperature	-15+55°C								
	IEC 60721-3-3	Rel. humidity	595 % r.h.								
	Pressure Equipment Directive	2014/68/EU									
	Pressure-carrying accessories	Scope: Article 1, section 1									
		Definitions: Article 2, section	5								
	Fluid group 2	PN 25									
	DN 65125	Category I, Module A, with C	E-marking								
		as per article 14, section 2									
	DN 150	Category II, Module A2, with	CE-marking								
		as per article 14, section 2									
		notified body number 0035									
	EU conformity (CE)	A5W90001953*									
Standards	PN class	ISO 7268									
	Operating pressure	ISO 7005									
	Flanges	ISO 7005									
	Length of flanged valves	DIN EN 558, line 1									
	Valve characteristic	VDI 2173									
	Leakage rate	Through port, according to E	N 60534-4 / EN 1349								
	Water treatment	VDI 2035									
	Environmental compatibility	VDI 2035 The product environmental declaration (A5W00309337A) contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).									


VVF53..C

	VVI 330						
Functional data	PN class		PN 25				
	Connection		Flange				
	Operating pressu	ire	See Section "Operating pressure and medium temperature"				
			on page 37				
	Valve characteris	stics 1)	See section "Error! Reference source not found.", Error! Bookmark not defined.				
	Leakage rate	Throughport	DN 15150: 00.01 % of k _{vs} value (Class IV)				
			DN 200, DN 250: 00.02 % of k _{vs} value				
	Bypass	Bypass	0.5…2 % of k_{vs} value with SKD, SKB, SKC 0…0.05 % of k_{vs} value with SAX, SAV				
	Permissible med	ia	See table "Error! Reference source not found.", Error!				
			Bookmark not defined.				
	Medium tempera	ture	-20220 °C ²⁾ VVF53K: -5220 ° C				
	Rangeability		DN 15, $k_{vs} \le 1.25 \text{ m}^3/\text{h}$: >50				
	5 ,		DN 15150: >100				
			DN 200, DN 250: >50				
	Nominal stroke		Up to DN 50: 20 mm				
			From DN 65: 40 mm DN 15150: EN-GJS-400-18-LT				
Materials	Valve body		DN 15150: EN-GJS-400-18-LT DN 200, DN 250: ASTM A216WCB(GP240GH)				
	Blank flange VVF		DN 250; DN 250; ASTM A2 10WCB (GF240GH)				
	Valve stem, seat		Stainless steel				
	Stem sealing gla	1 0	Stainless steel				
	otom oodinig gid		DN 15150: FEPM (silicone-free)				
			DN 200, DN 250: PTFE (not silicone-free)				
	Compensation se	ealing	Stainless steel				
			DN 50150: FEPM (silicone-free)				
			DN 200, DN 250: PTFE+carbon (not silicone-free)				
	Adapter ALF41B Pressure Equipment Directive		Steel S235JRG2				
Norms and	• •		PED 2014/68/EU				
directives	Pressure Access	ones	Scope: Article 1, section 1 Definition: Article 2, section 5				
	Fluid group 2:						
	0 1	≤ DN 40	without CE-marking,				
			as per article 4, section 3				
			(sound engineering practice) ³⁾				
		DN 50100	• •				
		-	as per article 14, section 2				
		DN	Category II, Module A2, with CE-marking,				
		125150	as per article 14, section 2 notified body number 0036				
		DN 200, DN	Category II, Module A2, with CE-marking,				
		250	as per article 14, section 2				
			notified body number 0035				
	EU Conformity (0	CE)					
		DN 50150	A5W00006523 4)				
		DN 200, DN 250	A5W90001026 4)				
	PN class		ISO 7268				
	Operating pressu	ire	ISO 7005, DIN EN 12284				
	Flanges		ISO 7005				
	Length of flanged	d valves	DIN EN 558-1, line 1				
	Valve characteris		VDI 2173				
	Leakage rate		Throughport, Bypass according to				
			EN 60534-4 / EN 1349				
	Water treatment		VDI 2035				

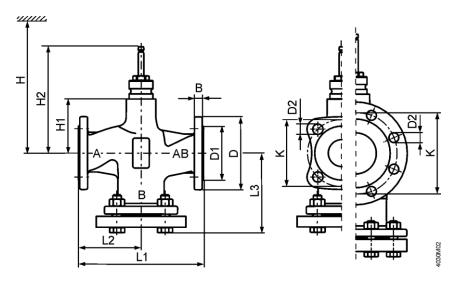
Environmental conditions	_				
	Storage: IEC 60721-3-1	Class	1K3		
		Temperature	-1555 °C		
		Rel. humidity	595 % r.h.		
	Transport: IEC 60721-3-2	Class	2K3, 2M2		
		Temperature	-3065 °C		
		Rel. humidity	< 95 % r.H.		
	Operation: IEC 60721-3-3	Class	3K5, 3Z11		
		Temperature	-1555 °C		
		Rel. humidity	595 % r.h.		
Environmental compatibility	The product environmental de A5W90001031 ⁴⁾ contains dat		CE1E4404en02 ⁴⁾ and ble product design and assessments		
	(RoHS compliance, materials	composition, packaging, envir	onmental benefit, disposal).		
Dimensions / Weight	Dimensions	,,	Reference source not found.", Bookmark not defined. + Error! ot defined.		
	Weight	page Error! E	See "Error! Reference source not found.", page Error! Bookmark not defined. + Error! Bookmark not defined.		

6 Dimensions

VVF47..

													Н	
	DN	в	ØD	Ø D2	Ø D4	к	L1	L2	L3	H1	H2	SBX	SBV	Weight
							r	nm						kg
VVF47.50	50	20	165	19 (4x)	99	125	230	115	143	50	146	> 410	-	11.0
VVF47.65	65	20	185	19 (4x)	118	145	290	145	173	75	171	> 435	>500	16.0
VVF47.80	80	22	200	19 (8x)	132	160	310	155	185	75	171	> 435	>500	23.8
VVF47.100	100	24	220	19 (8x)	156	180	350	175	205	110	226		> 530	32.5
VVF47.125	125	26	250	19 (8x)	184	210	400	200	233	123	239		> 540	45.0
VVF47.150	150	26	285	23 (8x)	211	240	480	240	275	150	267		> 670	65.0

VXF47..


	н													
	DN	в	ØD	Ø D2	Ø D4	К	L1	L2	L3	H1	H2	SBX	SBV	Weight
	mm									kg				
VXF47.50	50	20	165	19 (4x)	99	125	230	115	115	50	146	> 410	-	8.7
VXF47.65	65	20	185	19 (4x)	118	145	290	145	145	75	171	> 435	>500	12.9
VXF47.80	80	22	200	19 (8x)	132	160	310	155	155	75	171	> 435	>500	19.5
VXF47.100	100	24	220	19 (8x)	156	180	350	175	175	110	226		> 530	27.7
VXF47.125	125	26	250	19 (8x)	184	210	400	200	200	123	239		> 540	38.3
VXF47.150	150	26	285	23 (8x)	211	240	480	240	240	150	267		> 570	54.1

DN = Nominal size

H = Total actuator height plus minimum distance to the wall or the ceiling for mounting, connection, operation, maintenance etc.

H1 = Dimension from the pipe centre to install the actuator (upper edge)

H2= Valve in the "Closed" position means that the stem is fully extended

		_												ŀ	1		
	DN	В	øD	øD1	øD2	L1	L2	L3	øK	H1	H2	SAX	SKD	SKB	SAV	SKC	Weight
	mm													kg			
VVF42.25	25 ¹⁾	13	115	65	14 (4x)	160	80	101.5	85	37	133.5	479	537	612	-	-	5.0
VVF42.32	32 ¹⁾	15	140	76	19 (4x)	180	90	116	100	38	133.5	479	537	612	-	-	7.4
VVF42.40	40 ¹⁾	15	150	84	19 (4x)	200	100	126	110	38	133.5	479	537	612	502	-	8.9
VVF42.50	50 ¹⁾	16	165	99	19 (4x)	230	115	144	125	51.5	146.5	492	550	625	516.5	-	11.9
VVF42.65	65	17	185	118	19 (4x)	290	145	174	145	75	171.5	517	575	650	540	-	16.7
VVF42.80	80	19	200	132	19 (8x)	310	155	186	160	75	171.5	517	575	650	540	-	26.6
VVF42.100	100	20	220	156	19 (8x)	350	175	205	180	110	226.5	-	-	-	575	685	36.5
VVF42.125	125	15	250	184	19 (8x)	400	200	228	210	123	239.5	-	-	-	588	698	45.7
VVF42.150	150	15	284	211	23 (8x)	480	240	272.5	240	150.5	267	-	-	-	615.5	726	63.6
VVF42.65KC	65	17	185	118	19 (4x)	290	145	174	145	75	171.5	517	575	650	540	-	16.7
VVF42.80KC	80	19	200	132	19 (8x)	310	155	186	160	75	171.5	517	575	650	540	-	26.9
VVF42.100KC	100	20	220	156	19 (8x)	350	175	206	180	110	226.5	-	-	-	575	685	36.7
VVF42.125KC	125	15	250	184	19 (8x)	400	200	228	210	123	239.5	-	-	-	588	698	44.4
VVF42.150KC	150	15	284	211	23 (8x)	480	240	272.5	240	150.5	267	-	-	-	615.5	726	65.0

VXF42..C

Weight

kg

4.1

6.1 7.1 9.5 13.9 21.5

31.1

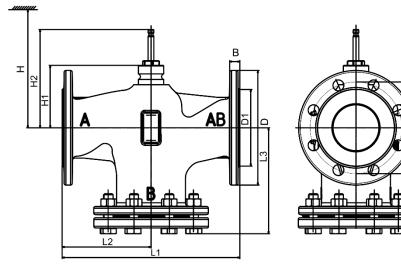
38.4

53.6

					· · /											
VXF42.32	32 ¹⁾	15	140	76	19(4x)	180	90	90	100	38	133.5	479	537	612	503	-
VXF42.40	40 ¹⁾	15	150	84	19(4x)	200	100	10	110	38	133.5	479	537	612	503	-
VXF42.50	50 ¹⁾	16	165	99	19 (4x)	230	115	115	125	51.5	146.5	492	550	625	516.5	-
VXF42.65	65	17	185	118	19 (4x)	290	145	145	145	75	171.5	517	575	650	540	-
VXF42.80	80	19	200	132	19 (8x)	310	155	155	160	75	171.5	517	575	650	540	-
VXF42.100	100	20	220	156	19 (8x)	350	175	175	180	110	226.5	-	-	-	575	685
VXF42.125	125	15	250	184	19 (8x)	400	200	200	210	123	239.5	-	-	-	588	698
VXF42.150	150	15	284	211	23 (8x)	480	240	240	240	150.5	267	-	-	-	615.5	726

DN = Nominal size

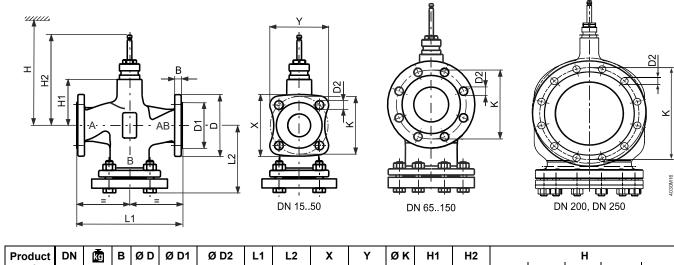
DN


в

H = Total actuator height plus minimum distance to the wall or the ceiling for mounting, connection, operation, maintenance etc.

H1 = Dimension from the pipe centre to install the actuator (upper edge)

H2 = Valve in the "Closed" position means that the stem is fully extended


VVF52..KC

	DN	в	øD	«D1	øD2	14	L2	L3	øK	H1	H2		Н		Waight
	DN	D	U	øD1	ØDZ	L1	LZ	Lo	ø٨		п2	SKD	SKB	SKC	Weight
		mm										kg			
VVF52KC	65	18	185	120	19(8x)	290	145	173	145	75	171.5	575	650	-	65
	80	18	200	134	19(8x)	310	155	185	160	75	171.5	575	650	-	80
	100	18	235	158	23(8x)	350	175	207.5	190	110	226.5	-	-	685	100
	125	18	270	186	28(8x)	400	200	233	220	123	239.5	-	-	698	125
	150	18	297	213	28(8x)	480	240	274	250	150.5	267	-	-	726	18

Б,

VVF53..

Product	DN	k	в	ØD	Ø D1	Ø D2	L1	L2	Х	Y	øк	H1	H2			Н		
number														SAX	SKD	SKB	SAV	SKC
VVF53C	15	4.2	12	95	46	14 (4x)	130	87.5	79	76	65	63	159.5	505	563	638	-	-
VVF53	20	5.3	14	105	56	14 (4x)	150	99.5	86.6	83	75	63	144.4	505	563	638	-	-
	25	6.1	13	115	65	14 (4x)	160	104.5	94.4	90.1	85	63	159.5	505	563	638	-	-
	32	8.7	15	140	76	19 (4x)	180	119	115.6	110.7	100	60	156.5	502	560	635	-	-
	40	10.1	14	150	84	19 (4x)	200	129	123.2	117.8	110	60	156.5	502	560	635	525	-
	50	13.6	14	165	99	19 (4x)	230	146	135.2	128.4	125	100	196.5	542	600	675	565	-
	65	22	14	185	118	19 (8x)	290	178	-	-	145	115	231.5	-	-	-	580	690
	80	27.4	14	200	132	19 (8x)	310	190	-	-	160	115	231.5	-	-	-	580	690
	100	38.2	14	235	156	23 (8x)	350	212.5	-	-	190	146	262.5	-	-	-	611	721
	125	53.1	14	270	184	28 (8x)	400	242	-	-	220	159	275.5	-	-	-	624	734
	150	73.4	14	297	211	28 (8x)	480	284	-	-	250	186.5	303	-	-	-	652	762
VVF53K	50	13.6	14	165	99	19 (4x)	230	146	135.2	128.4	125	100	196.5	-	600	675	-	-
	65	22	14	185	118	19 (8x)	290	178	-	-	145	115	231.5	-	-	-	-	690
	80	27.6	14	200	132	19 (8x)	310	190	-	-	160	115	231.5	-	-	-	-	690
	100	38.6	14	235	156	23 (8x)	350	212.5	-	-	190	146	262.5	-	-	-	-	721
	125	53.8	14	270	184	28 (8x)	400	242	-	-	220	159	275.5	-	-	-	-	734
	150	75	14	297	211	28 (8x)	480	284	-	-	250	186.5	303	-	-	-	-	762
	200	133	30	360	274	26 (12X)	600	265	-	-	310	243	359.5	-	-	-	-	818
	250	200	32	425	330	30 (12X)	730	290	-	-	370	275	391.5	-	-	-	-	850

7 Revision number

Product type	Valid from rev. number	Product type	Valid from rev. number
VVF47.50	B	VXF47.50	B
VVF47.65	В	VXF47.65	В
VVF47.80	В	VXF47.80	В
VVF47.100	C	VXF47.100	B
VVF47.125	C	VXF47.125	В
VVF47.150	C	VXF47.150	B
VVF42.25-6.3C	A	VXF42.25-6.3C	A
VVF42.25-10C	A	VXF42.25-10C	A
VVF42.32-16C	A	VXF42.32-16C	A
VVF42.40-16C	A	VXF42.40-16C	A
VVF42.40-25C	A	VXF42.40-25C	A
VVF42.50-31.5C	A	VXF42.50-31.5C	A
VVF42.50-40C	A	VXF42.50-40C	A
VVF42.65-50C	A	VXF42.65-50C	A
VVF42.65-63C	A	VXF42.65-63C	A
VVF42.80-80C	A	VXF42.80-80C	A
VVF42.80-100C	A	VXF42.80-100C	A
VVF42.100-125C	A	VXF42.100-125C	A
VVF42.100-160C	A	VXF42.100-160C	A
VVF42.125-200C	A	VXF42.125-200C	A
VVF42.125-250C	A	VXF42.125-250C	A
VVF42.150-315C	A	VXF42.150-315C	A
VVF42.150-400C	A	VXF42.150-400C	A
VVF42.65KC	A	VVF52.65-63KC	A
VVF42.80KC	A	VVF52.80-100KC	A
VVF42.100KC	A	VVF52.100-160KC	A
VVF42.125KC	A	VVF52.125-200KC	A
VVF42.150KC	A	VVF52.150-315KC	A
VVF53.15-0.16C	A	VVF53.32-16C	A
VVF53.15-0.2C	A	VVF53.40-12.5C	A
VVF53.15-0.25C	A	VVF53.40-16C	A
VVF53.15-0.32C	A	VVF53.40-20C	A
VVF53.15-0.4C	A	VVF53.40-25C	A
VVF53.15-0.5C	A		
VVF53.15-0.63C	A		
VVF53.15-0.8C	A		
VVF53.15-1C	A		
VVF53.15-1.25C	A		
VVF53.15-1.6C	A		
VVF53.15-2C	A		
VVF53.15-2.5C	A		
VVF53.15-3.2C	A		
VVF53.15-4C	A		
VVF53.20-6.3C	A		
VVF53.25-5C	A		
VVF53.25-6.3C	A		
VVF53.25-8C	A		
VVF53.25-10C	A		

8 Addendum

8.1 Abbreviations

Abbreviation	Unit	Term	Explanation
С	[kJ/kgK]	Specific heat capacity	See "Specific heat capacity", page 65
DN	-	Nominal size	Characteristic for matching parts of a piping system
F _R	-	Correction factor	Factor for impact of valve's Reynolds number
Н	[mm]	Stroke	Travel of valve or actuator stem
H₀	[m]	Shutoff head	Pump head when medium is supplied. The head
			generated by a pump when the valve is fully closed
kv	[m ³ /h]	Nominal flow	Amount of cold water (530 °C) passing through
			the valve at the respective stroke and at a
			differential pressure of 100 kPa (1 bar)
k _{vr}	[m³/h]	-	Smallest volumetric flow that can be controlled, that
			is, when the valve starts to open (opening step)
k _{vs}	[m³/h]	Nominal flow	Nominal flow rate of cold water (530 °C) through
			the fully open valve (H_{100}) at a differential pressure
			of 100 kPa (1 bar)
m	[kg/h]	Mass flow	-
		Steam mass flow	
PN	-	PN class	Characteristic relating to the combination of
			mechanical and dimensional properties of a
			component in a piping system
Pv	-	Valve authority	See "Valve authority Pv", page 65
Q ₁₀₀	[kW]	Rated capacity	Design capacity of plant
Qmin	[kW]		Smallest output of a consumer that can be
			controlled in modulating mode
r _{p1}	[kJ/kgK]		Specific heat capacity of steam
Sv	-	Rangeability	See "Rangeability SV", page 65
V ₁₀₀	[m³/h],	Volumetric flow	Volume per unit of time through the fully open valve
	[l/s]		(H ₁₀₀)
ρ	[kg/m ³]	Density	Mass per volume
υ	[mm²/s],	Kinematic viscosity	1 mm ² /s = 1 cSt (centistoke), also refer to chapter
	[cSt]		"2.8.3.3 Kinematic viscosity v", page 22
Δp	[kPa]	Differential pressure	Pressure difference between plant sections
Δp_{max}	[kPa]	Max. differential	Maximum permissible differential pressure across
		pressure	the valve's throughport (control path) for the entire
			positioning range of the motorized valve
Δp_{MV}	[kPa]	-	Differential pressure across the section with
			variable flow
Δp_s	[kPa]	Closing pressure	Maximum permissible differential pressure at which
			the motorized valve still closes securely against the
			pressure
Δp_{v0}	[kPa]	-	Maximum differential pressure across the valve's
A	[LD-1	Differential	fully closed throughport (control path)
Δp_{v100}	[kPa]	Differential pressure at	Differential pressure across the fully open valve and
		nominal flow rate	the valve's throughport $A - AB$ at the volumetric flow
4.0			V ₁₀₀
	[kPa]	-	Differential pressure of flow and return
ΔΤ	[K]	Temperature spread	Temperature difference of flow and return

8.2 Important formulas

Value	Formula		Unit
Differential pressure Δp _{V100} across the fully open valve	$\Delta p_{V100} = 100 \cdot \left(\frac{\dot{V}_{100}}{k_{vs}}\right)^2$		[kPa]
Rangeability S _v	$S_V = \frac{k_{vs}}{k_{vr}}$		-
Valve authority P_V	Header with pressure, variable volumetric flow $P_V = \frac{\Delta p_{V100}}{\Delta p_{VR}}$	 Header with pressure, constant volumetric flow Header with low differential pressure, variable volumetric flow P_V = Δp_{V100} Δp_{V100} + Δp_{MV} 	-
Volumetric flow V ₁₀₀	Water without antifreeze $\dot{V}_{V100} = \frac{Q_{V100}}{1,163 \cdot \Delta T}$	Water with antifreeze $\dot{V}_{V100} = \frac{Q_{V100} \cdot 3600}{c \cdot \rho \cdot \Delta T}$	[m ³ /h]

8.3 Valve-related glossary

DIN EN 14597	Standard on temperature controls and temperature limiters for use in heat generating plants. This standard also covers actuating equipment (actuating devices) with safety function for temperature and pressure limitation as per DIN EN 14597
HIT	The HVAC Integrated Tool (HIT) supports sizing and selection of valves for water with antifreeze (<u>www.siemens.com/hit</u>)
Actuating device	Combination of valve and actuator
Rangeability S _∨	Characteristic of an actuating device, used to assess the device's controllable range; ratio of the nominal flow rate k_{vs} to the smallest controllable flow k_{vr}
Valve authority P _v	Ratio of the differential pressure across the fully open valve (H_{100}) to the differential pressure across the valve plus that of the pipe section with variable volume. To ensure correct control, the valve authority must be a minimum of 0.25
Specific heat capacity	The specific heat capacity is the amount of heat required to heat the mass of 1 kg of a substance by 1 K. It increases as the temperature of the substance rises; in the case of gases, also as the pressure of the substance rises. Therefore, with gases, a distinction is made between c_P , the specific heat at a constant pressure, and c_V , the specific heat at a constant volume

8.4 Hydraulics-related glossary

·	· · · · · · · · · · · · · · · · · · ·
Film temperature	Temperature of the valve surfaces that are in contact with the heat transfer oil at which the oil starts to disintegrate
Cavitation	Due to high speeds of the medium in the narrowest section of the valve, local underpressure occurs. If this pressure drops below the medium's boiling pressure, cavitation occurs (steam bubbles), possibly leading to material removal (abrasion). Also, when cavitation starts, the noise level increases abruptly. Cavitation can be avoided by limiting the pressure differential across the valve as a function of the medium temperature and the prepressure. For more detailed information, refer to chapter "2.13 Cavitation", page 38
Selection of valve characteristic	Certain types of Siemens actuators are equipped with DIL switches for the selection of a linear or an equal-percentage valve characteristic. The objective is to linearize the volumetric flow through the consumer and the valve
Closed circuit	The medium circulates in a closed hydraulic system with no contact to the atmosphere
Open circuit	The circulating medium is in contact with the atmosphere, that is, the hydraulic system is open to atmosphere (e.g. cooling towers with open tanks, or showers). Hence, the system can absorb oxygen from the surrounding air, which can lead to rust; in addition, more attention is to be paid to cavitation; for more information, refer to chapter "2.13 Cavitation", page 38
Control stability	The stability of a closed control loop depends on the degree of difficulty S of the controlled system and the circuit amplification V_0 . For more detailed information, refer to the Siemens brochure "Control technology" (ordering no. 0-91913-en)
Return temperature T _{RL}	Temperature of the medium at which it returns from the consumer to the heat or cooling source
Gravity circulation	The density of a medium depends on its temperature. If a medium is hot in one place and cold in another, it starts to circulate due to different densities
Volumetric flow V	Volume of a medium that passes through an opening for a certain time
Flow temperature T _{VL}	Temperature of a heating or cooling medium at which it leaves its source to enter a hydraulic circuit
Selection of acting direction	Certain types of Siemens actuators are equipped with DIL switches for selection of the operating action of the respective valve (push to open, pull to open, normally open, normally closed). The objective is to drive the valve to the fully open or fully closed position should a power failure occur, depending on plant requirements
Forced control	If forced control is demanded, no consideration is given to any other control command. For example, if there is risk of frost, more heat is supplied to prevent freeze-ups

8.5 Media-related glossary

Enthalpy	Amount of energy contained in a thermodynamic system (heat content)						
FDA	Food and Drug Administration (USA)						
Saturated steam	Boundary between wet and superheated steam; Wet steam: Parts of the gaseous water condensate to become very fine droplets Superheated steam: "Dry" steam without water droplets						
Brine	olution consisting of salt and water						
Heat transfer oil/thermal oil	eat transfer fluid on the basis of mineral oil, synthetic, organic, or n the basis of silicon, uniform or mixed						
Water	Chemical compound consisting of oxygen (O) and hydrogen (H). Also refer to VDI 2035 for information on avoiding damage to drinking and domestic hot water plants						
Water with antifreeze	The water contains antifreeze which also inhibits corrosion. For the types of antifreeze used in the trade, also refer to chapter "8.7 Overview of antifreeze and brine used in the trade", page 67						
Glycol	Glycol is added to water to lower the water's melting point. Examples are ethylene glycol and propylene glycol. Refer to chapter "8.7 Overview of antifreeze and brine used in the trade", page 67						
Water, deionized	The ions of salts contained in the water have been removed						
Water, demineralized	The minerals contained in the water have been removed						
Water, super-clean water	Specially treated water; various processes are used to remove dissolved salts and other undesirable substances. It has a high specific resistance and contains no organic substances						

8.6 Trade names

Trademark	Legal owner
Acvatix	Siemens
Glythermin	BASF
Antifrogen, Protectogen	Clariant
Dowcal	Dow
Zitrec, Freezium	Arteco NV/SA
TYFOCOR, TYFOXIT	Tyforop Chemie GmbH
GLYKOSOL, PEKASOL, PEKASOLar	Glykol & Sole GmbH
Temper	Temper Technology

8.7 Overview of antifreeze and brine used in the trade

The list below is not exhaustive. It specifies manufacturer data and is not to be regarded as an official approval for Siemens products in the indicated temperature range. For temperature ranges of individual product lines, see chapter 2.12, page 34. The notes given under "Medium quality and medium treatment", page 40 must also be observed.

	Supplier	Product number	Basic medium	Permissible limit weight fractions	Temperature range of medium	Usage
	BASF	Glythermin® NF	Heat transfer medium on the basis of ethylene glycol and inhibitors	-	-35150 °C	No known restriction
	<u>www.basf.com</u>	Glythermin® P 44-00	Basis: Propylene glycol plus anticorrosion additives	-	-50150 °C	No known restriction
		Glythermin® P 44-92	Basis: Propylene glycol plus anticorrosion additives	-	-50150 °C	No known restriction
		Glythermin® P 82-00	Heat transfer medium for solar plants on the basis of glycol and inhibitors	-	-27 170 °C	No known restriction
		Glysantin FC	Basis Ethylene glycol → Automobile applications, engine test bed	60 %	-40°C120°C	No known restriction
	Clariant www.antifrogen.de	Antifrogen SOL	Basis: Propylene glycol and glycol with a higher boiling point plus anticorrosion additives. Ready to use, premixed with desalinated water (frost protection -27 °C)	Ready-to-use mixture	-27 170 °C	No known restriction
		Antifrogen KF	Basis: Potassium formate plus anticorrosion additives	50 %	-5020 °C	Restricted - compatibility must be tested
		Antifrogen N	Basis: Monoethylene glycol plus anticorrosion additives	70 %	-35150 °C	No known restriction
		Antifrogen L	Basis: Propylene glycol plus anticorrosion additives	100 %	-25150 °C	No known restriction
	Dow www.dow.com/heattrans	Dowcal 10	Heat transfer medium on the basis of ethylene glycol and special inhibitor	-	-50170 °C	No known restriction
		Dowcal 20	Heat transfer medium on the basis of propylene glycol for higher temperatures than other propylene glycol fluids	-	-45160 °C	No known restriction
Water with antifreeze		Dowcal N	Heat transfer medium on the basis of propylene glycol with little acute toxicity if swallowed; widely used in the food and beverage industry and in other sectors to lower the freezing point	-	-45120 °C	No known restriction
	Arteco NV/SA www.zitrec.com/	Zitrec MC	Multipurpose heat transfer medium on the basis of monoethylene glycol, mixed with an adequate amount of water	<70 %	-55120 °C	No known restriction
		Zitrec LC	Multipurpose heat transfer medium on the basis of monopropylene glycol, mixed with an adequate amount of water	<70 %	-55120 °C	No known restriction
		Zitrec FC	Multipurpose heat transfer medium on the basis of monopropylene glycol, mixed with an adequate amount of water; all substances contained in the medium are approved by FDA	<70 %	-50120 °C	No known restriction
		Zitrec S	Multipurpose heat transfer medium without glycol, on the basis of a substance consisting of potassium formate and sodium propionate	Ready-to-use mixture	-55120 °C	Restricted - compatibility must be tested
	Tyforop Chemie GmbH www.tyfo.de/index_deuts ch.html	TYFOCOR® L	Freezing and anticorrosion agent, safe with regard to health, specifically for keeping food cool and for solar plants, virtually odourless, hygroscopic liquid. It is based on propylene glycol, which poses no hazard to health and which may be used as a coolant or heat-transfer fluid in food processing and water purification applications.	-	-25140 °C	Restricted - compatibility, especially with respect to soft solder - individual case must be tested
		TYFOCOR® HTL	Ready-to-use heat transfer medium for solar plants with higher thermal loads, clear, blue-green colored liquid with a faint odour and is based on 1,2-propylene glycol and polyethylene glycol.	-	170°C	Restricted - compatibility, especially with respect to soft solder - individual case must be tested

Supplier	Product number	Basic medium	Permissible limit weight fractions	Temperature range of medium	Usage
	TYFOCOR® LS	Special, ready-to-use heat transfer medium, evaporating without residue, for solar plants with high thermal loads (vacuum tube collectors); faint odour, based on physiologically unobjectionable propylene glycol, and water.	-	-25170 °C	Restricted - compatibility, especially with respect to soft solder - individual case must be tested
	TYFOCOR	Clear, colorless, faint odour liquid, based on ethylene glycol.		-50140 °C	Restricted - compatibility, especially with respect to soft solder - individual case must be tested
	TYFOCOR G-LS	Reversibly evaporable special heat-transfer fluid based on 1,2- propylene glycol, for use in solar thermal systems		170 °C	Restricted - compatibility, especially with respect to soft solder - individual case must be tested
	TYFO-SPEZIAL	High-quality, powerful brine, specifically for use in earth linked thermal heat pump systems		-1030 °C	Restricted - copper, brass and bronze material is not resistant, test sealing material in individual case
Glykol & Sole GmbH	GLYKOSOL N	Yellowish fluid on the basis of monoethylene glycol for use as a heat transfer medium with highly efficient anticorrosion additives and hardness stabilizers; free from nitrite, amine and phosphate	2540 %, depending on the application	-50170 °C	No known restriction
	GLYKOSL WP	Based on Ethandiol 1,2 (ethyleneglycol)	-	-	Check permissibility in individual case
	PEKASOL 2000	Aqueous solution of environmentally safe alkaline earth formate and acetate. PEKASOL 2000 is free of amine, nitrite and phosphate.	-	-6060°C	Restricted - compatibility, especially with respect to soft solder and zinc - individual case must be tested
	PEKASOL L	Yellowish fluid on the basis of propylene glycol for use as a heat transfer medium with highly efficient anticorrosion additives and hardness stabilizers; free from nitrite, amine and phosphate	2540 %, depending on the application	-50185 °C	No known restriction
	PEKASOLar 100 PEKASOLar 50	PEKASOLar 100 and its dilutions are colorless and odorless liquids on basis of propylene glycol with newly developed additives New installations must be adequately cleaned before filling. Recommended is a 5 % pro KÜHLSOLE PEX 130 solution.	•	-50150 °C	Restricted - compatibility, especially with respect to soft solder - individua case must be tested
Arteco NV/SA www.zitrec.com/Products _Freezium.htm	Freezium	Salt brine on the basis of potassium formate, specially developed for use in indirect cooling systems and heat pumps. Suitable for a temperature range from -60 to 95 °C	2450 %	-6035 °C	Restricted - individual case must be tested
Tyforop Chemie GmbH www.tyfo.de/index_deuts ch.html	TYFOXIT®F15-F50	High-performance coolant on the basis of potassium formate (safe with regard to food). Available as a ready-to-use mixture in 6 variants (F15 - F50), cooling limits from -15 to -60 °C. Excellent flow properties at low temperatures, due to low viscosity	-	-60100 °C	Restricted permissibility, more precise evaluations at 2080 °C necessary (test soft solder in individual case)

Supplier	Product number	Basic medium	Permissible limit weight fractions	Temperature range of medium	Usage
	TYFOXIT® 1.25	High-performance coolant on the basis of potassium acetate (safe with regard to food). Supplied as a concentrate or ready-to-fill mixture and suited for use at temperatures down to -55 °C	-	-55100 °C	Restricted permissibility, more precise evaluations at 2080 °C necessary (test soft solder in individual case)
Temper Technology www.temper.se/Temper (eng)/Temper/Download_ information/Temper DXN I-2251 .aspx	Temper	Synthetic and homogenized, glycol-free solutions on the basis of salts; suitable for temperatures from -10 to -50 °C; colorless to slightly yellowish; contain no amines or nitrites, but additives to support protection against corrosion and to improve lubrication	Ready-to-use mixtures	-55180 °C	Restricted ²⁾ - check compatibility, especially with respect to fiber gasket, PTFE (Teflon), FPM (Viton), soft solder unsuitable Cast iron at higher temperatures unsuitable Non-ferrous metal suited to a limited extent, must be

¹⁾ Supplier's Usage Instructions must be observed

²⁾ Restricted usage with regard to concentration or temperature

Index

2-port valves	
product description	
valve characteristics	24
with flanged connections	11
3-port valves	
product description	
valve characteristics	
with flanged connections	
Abbreviations	
Acting direction	
Actuator overview	13
Antifreeze	51
Brines	51
Calculation examples	
example for water22	
Calibration	
Cavitation	
Circulation	
Commissioning	
Compatibility	
Converting	
Correction factor	
Coupling	
Dimensions	
Direction of flow	
Disposal	
Engineering notes	
Equipment combinations	
Fields of use	10
Flanges	
connection	
faces	
types	
Flow noise	31

Formulas	.49
Function check	.37
Installation	.34
Kinematic viscosity	
flow chart	.17
impact on valve sizing	.19
Maintenance	.37
Medium	
water, deionized, demineralized, super-clean	.30
Medium quality29,	51
Medium temperature	.25
Medium treatment	
Mounting	.34
Mounting positions	.34
Operating pressure	.25
Ordering	.14
Plug stop	.39
Rangeability	.21
Spare parts	.15
Strainer (dirt trap)	.31
Technical data	.41
Tightening torques	.36
Trade names	.51
Trademarks	5
Type summary	. 11
Use	.10
Valve characteristic	
Valve neck	.39
Valve sizing	
fluids	.16
impact of fluid properties	.18
procedure	.16
Valve stem	.39
Warranty	.33