

ACVATIX ${ }^{\text {TM }}$

Electromotoric actuators

SQL321B..
 SQL361B..

For VKF42.., VFF41... butterfly valves

- SQL321B.. Operating voltage AC 220 V , 2-position (SPDT) control signal
- SQL361B.. Operating voltage AC 220 V , $\mathrm{DC} 0(2) \ldots 10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$ control signal
- Optional auxiliary switch for SQL361B150...B6000
- Nominal angle of rotation 90°
- Handwheel and position indicator
- Built-in heating element to avoid condensation
- Compatible with EN ISO 5211 flanges

For operation of VKF42.., VFF41.. butterfly valves as shutoff and control valves in heating, ventilation and air conditioning plants.

Type summary

Product No.	Stock No.	Operating Voltage	Positioning Signal	Position Feedback Signal	Positioning Time for 90° at 50 Hz [s]	Nominal Torque [Nm]	Flange Connection EN ISO 5211
SQL321B25	S55164-A100	AC 220 V 1 phase	2-position (SPDT)	Dual auxiliary switch	11	25	F07
SQL321B50	S55164-A101		2-position (SPDT)	Dual auxiliary switch	11	25	F07
SQL321B150	S55164-A103		2-position (SPDT)	Dual auxiliary switch	11	25	F07
SQL321B270	S55164-A105		2-position (SPDT)	Dual auxiliary switch	22	50	F07
SQL321B570	S55164-A107		2-position (SPDT)	Dual auxiliary switch	22	50	F07
SQL321B1400	S55164-A109		2-position (SPDT)	Dual auxiliary switch	22	50	F07
SQL321B2650	S55164-A111		2-position (SPDT)	Dual auxiliary switch	39	150	F07
SQL321B6000	S55164-A125		2-position (SPDT)	Dual auxiliary switch	39	150	F07
SQL361B25	S55164-A113		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\mathrm{DC} 0(2) \ldots 10 \mathrm{~V},$ $4 \ldots 20 \mathrm{~mA}$, dual auxiliary switch	39	150	F07
SQL361B50	S55164-A102		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\mathrm{DC} 0(2) \ldots 10 \mathrm{~V},$ $4 \ldots 20 \mathrm{~mA}$, dual auxiliary switch	39	270	F10
SQL361B150	S55164-A104		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\text { DC } 0 \text { (2)... } 10 \mathrm{~V} \text {, }$ 4... 20 mA , dual auxiliary switch	39	270	F10
SQL361B270	S55164-A106		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\text { DC } 0 \text { (2)... } 10 \text { V, }$ $4 \ldots 20 \mathrm{~mA}$, dual auxiliary switch	39	270	F10
SQL361B570	S55164-A108		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\text { DC } 0 \text { (2)... } 10 \text { V, }$ $4 \ldots 20 \mathrm{~mA}$, dual auxiliary switch	47	570	F12/F10
SQL361B1400	S55164-A110		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\mathrm{DC} 0(2) \ldots 10 \mathrm{~V},$ 4... 20 mA , dual auxiliary switch	47	570	F12/F10
SQL361B2650	S55164-A112		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\text { DC } 0 \text { (2)... } 10 \text { V, }$ $4 \ldots 20 \mathrm{~mA}$, dual auxiliary switch	47	570	F12/F10
SQL361B6000	S55164-A126		DC 0(2)... $10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$	$\text { DC } 0 \text { (2)... } 10 \text { V, }$ $4 \ldots 20 \mathrm{~mA}$, dual auxiliary switch	47	1400	F14

Ordering

	The actuator, butt When ordering,	valve and any a the quantity, pr	sories must be ordered name and product num	
Example	Product No.	Stock No.	Description	Quantity
	SQL361B150	S55164-A104	Electromotoric actuator	1
	ASC10.21	S55845-Z122	Double auxiliary switch	1
Delivery	The actuator, acc individual items.	and butterfly	re packed separately a	ivered as
Rev. No.	See chapter "Rev.	on page 13.		

Equipment combinations

	Electromotoric Actuators ${ }^{1)}$						
	SQL321B25 SQL361B25	SQL321B50 SQL361B50	$\begin{aligned} & \hline \text { SQL321B150 } \\ & \text { SQL361B150 } \end{aligned}$	$\begin{aligned} & \hline \text { SQL321B270 } \\ & \text { SQL361B270 } \end{aligned}$	SQL321B570 SQL361B570	$\begin{aligned} & \text { SQL321B1400 } \\ & \text { SQL361B1400 } \end{aligned}$	$\begin{aligned} & \text { SQL321B2650 } \\ & \text { SQL361B2650 } \end{aligned}$
Butterfly Valve	$\Delta \mathrm{p}_{\mathrm{s}}[\mathrm{kPa}]$						
VKF42.50	700						
VKF42.65	700						
VKF42.80	700						
VKF42.100		700					
VKF42.125		700					
VKF42.150		700					
VKF42.200			700				
VKF42.250				700			
VKF42.300				700			
VKF42.350					700		
VKF42.400					700		
VKF42.450						700	
VKF42.500						700	
VKF42.600							700

	Electromotoric Actuators ${ }^{1)}$							
	SQL321B25 SQL361B25	$\begin{aligned} & \text { SQL321B50 } \\ & \text { SQL361B50 } \end{aligned}$	$\begin{aligned} & \hline \text { SQL321B150 } \\ & \text { SQL361B150 } \end{aligned}$	$\begin{aligned} & \hline \text { SQL321B270 } \\ & \text { SQL361B270 } \end{aligned}$	SQL321B570 SQL361B570	$\begin{aligned} & \text { SQL321B1400 } \\ & \text { SQL361B1400 } \end{aligned}$	$\begin{aligned} & \text { SQL321B2650 } \\ & \text { SQL361B2650 } \end{aligned}$	SQL321B6000 SQL361B6000
Butterfly Valve	$\Delta \mathrm{p}_{\mathrm{s}}[\mathrm{kPa}]$							
VFF41.40	1000							
VFF41.50	1000							
VFF41.65	1000							
VFF41.80	1000							
VFF41.100		1000						
VFF41.125		1000						
VFF41.150		1000						
VFF41.200			1000					
VFF41.250				1000				
VFF41.300				1000				
VFF41.350					1000			
VFF41.400					1000			
VFF41.450						1000		
VFF41.500						1000		
VFF41.600							1000	
VFF41.700							1000	
VFF41.800								1000
VFF41.900								1000

1) SQL321B.., SQL361B.. electromotoric actuators can be mounted directly on VKF42.. or VFF41.. butterfly valves.
Δp_{s} Maximum permissible differential pressure at which the motorized butterfly valve will close securely against the pressure (close off pressure)

The actuator is driven by a 2-position (SPDT) or DC $0(2) \ldots 10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$ control signal from the controller and generates a rotary motion which is transferred to the butterfly valve via a driver.
These electromotoric actuators require no maintenance. They have a reversible asynchronous motor which drives the main shaft via gear train, which accommodates the diagonal square head of the butterfly valve. For SQL321B25, the coil spring is fitted with handwheel shaft, handwheel is engaged when pushed in. For others, the worm shaft is fitted with a direct-acting handwheel.

The actuators are 90° rotated so as to work with Siemens VKF42.., VFF41.. butterfly valves. During automatic operation, rotation is stopped by two built-in end-switches. To prevent the temperature inside the housing from falling below the dew point temperature, the actuators are equipped with a built-in heating element.

1 Position indication
2 Terminal compartment
3 Cover (motor inside)

Calibration SQL361B.

In order to determine the disc position fully closed "0 \%" or fully open "100 \%", calibration is recommended on initial commissioning of modulating type actuator.

Prerequisites

- Actuator is mounted on butterfly valve
- Rotate the actuator to the half-open position using the handwheel
- Housing cover is removed

$\begin{array}{\|l\|} \hline \text { Calibration } \\ \hline \text { 1. Supply power to } \\ \text { terminal } 1 \text { and } 2 . \\ \hline \end{array}$	LED on PCB		Actuator Movement
	(1)	Flash	Actuator moves to the position as indicated by control signal. (D4 flash)
2.Press button S1 for 3 seconds	- 'é -	Lit	Actuator moves to "100 \%" position (valve open). (D4 light)
	\bigcirc	Flash once	Actuator stops at "100 \%" position (valve open), indicate light flashes (D6), and then the actuator is ready to move towards "0 \%"position (valve closed).
	\cdots	Flash once	Actuator moves to "0 \%" position (valve closed). (D7 flash once)
	\cdots	Flash	Actuator stops at " 0% " position (valve closed). The indicate light flashes (D4), and then the calibration finished.
3. Calibration finished.	\bigcirc	Flash	Actuator moves to the position as indicated by control signal. (D4 flash)

W1, 20 mA calibration potentiometer

Prerequisites		
－Actuator is mounted on butterfly valve －Rotate the actuator to the half－open position using the handwheel －Housing cover is removed		
Calibration	LED on PCB	Actuator Movement
1．Supply power to terminal 1 and 2.	Lit	Actuator moves to the position as indicated by control signal．
2．Press button S 1 for 3 seconds	Dark	Actuator moves to＂100 \％＂position（valve open）．
	Flash once	Actuator stops at＂100 \％＂position（valve open）， indicate light flashes，and then the actuator is ready to move towards＂0 \％＂position（valve closed）．
	O Dark	Actuator moves to＂0\％＂position（valve closed）．
	Flash	Actuator stops at＂0 \％＂position（valve closed）．The indicate light flashes，and then the calibration fin－ ished．
3．Calibration finished．	Lit	Actuator moves to the position as indicated by control signal．
S4，Signal loss mode settings S3，Selection of Feedback Signal Types（0－10V 2－10V 4－20mA） ／信号丢失模式设置 ／选择反馈信号类型（0－10V 2－10V 4－20mA）		

Indication of operating state SQL361B..

SQL361B25.. 50

SQL361B150... 6000
$0 . .10 \mathrm{~V}$ and $4 . .20 \mathrm{~mA}$ signal SQL361B..

SQL361B25.. 50

The LED display indicating operating status can be viewed by opening the cover of the electronics module.

Function	LED Indication		Remarks, troubleshooting
	D10	D4	
Calibration mode	OFF O	ON 首:	Run calibration, everything ok. ${ }^{1)}$
	ON - - -	Flashing	Calibration error.
Control mode	OFF O	Flashing	Automatic operation; everything o.k. ${ }^{11,2)}$
	ON -'é:	Flashing	Internal error, troubleshooting
	OFF O	OFF O	No power Troubleshooting, eventually replace actuator

As a general rule, the LED can assume only the states shown above (continuously red, flashing, or off).
${ }^{1)}$ The Green LED (D6) with short lit on when reach to «100 \%» and the Red LED (D7) with short lit on when reach to «0 \%» stroke position.
2) When power supply to actuator but no Y control signal and also calibration not started, LED will be continuously red too.

Function	LED Indication	Remarks, troubleshooting	
Calibration	Off	0	Run calibration, everything o.k.
	Flashing		Calibration error
	Lit		Automatic operation; everything o.k. ${ }^{1)}$
	Flashing		Internal error, troubleshooting
	Off	No power	
Troubleshooting, eventually replace actuator			

As a general rule, the LED can assume only the states shown above (continuously red, flashing, or off).
${ }^{1)}$ When power supply to actuator but no Y control signal and also calibration not started, LED will be continuously red too.

- Factory setting for input and output signal in SQL361B.. is $0 . .10 \mathrm{~V}$.
- Select switch as below description.

Signal	Input	Output
	S3	S2
$0-10 \mathrm{~V}$	\square	\square
$2-10 \mathrm{~V}$	\square	\square
$4-20 \mathrm{~mA}$	\square	\square

- Factory setting for input and output signal in SQL361B.. is $0 . . .10 \mathrm{~V}$.
- Select switch as below description.

Signal	Input	Output
	S3	SO
$0-10 \mathrm{~V}$	\square	\square
$2-10 \mathrm{~V}$	\square	\square
$4-20 \mathrm{~mA}$	\square	\square

Accessories

Engineering notes
Electrical installation
The actuators must be electrically connected in accordance with local regulations and with the connection diagrams.

Warning

Regulations and requirements to ensure the safety of people and property must be always observed.

Mounting notes

Mounting instructions

Product No.	Documentation No.
VKF42..	7431908080 (M4119)
VFF41..	A5W00119634A (A6V12045430)
SQL321B.. / SQL361B..	7431908090 (M4520)
ASC10..	$7431908100(M 4520.1)$

These actuators can be mounted directly on type VKF42.., VFF41.. butterfly valves. The butterfly valves have to be closed "0 \%" when the actuators are mounted onto the valves.

Orientation

 The valve and actuator can be assembled on site. There is no need for special tools.

Commissioning notes

Warning

When commissioning the motorized butterfly valves, always check wiring and test the functions. This also applies to any additional components fitted, e.g. auxiliary switch.

Operating notes

Manual operation mode

SQL321B25...B50 SQL361B25...B50	Handwheel is engaged by pushing the handwheel in.
SQL321B150...B6000	The handwheel is always engaged.
SQL361B150...B6000	

Reversing the direction of rotation

Setting the angle of rotation

Maintenance notes

To avoid pressure shocks on the butterfly valve, the VKF42.., VFF41.. must be driven to its fully open position either manually or via positioning signal prior to activating the pumps).
The flow rate can be adjusted either by operating the electric actuators when necessary, or by operating the handwheel.
\longrightarrow

The actuators and butterfly valves require no maintenance.

Warning
Before performing any service work on the valve or actuator:

- Switch off the pump and power supply
- Close the main shut-off valves in the pipe work
- Release pressure in the pipes and allow them to cool down completely

If necessary, disconnect electrical connections from terminals.
The valve must be re-commissioned only with the handwheel or the actuator correctly assembled.

Disposal

The device is considered electrical and electronic equipment for disposal in terms of the applicable European Directive and may not be disposed of as domestic garbage.

- Dispose of the device through channels provided for this purpose.
- Comply with all local and currently applicable laws and regulations.

The engineering data specified in chapter "Equipment combinations" (page 3) are only guaranteed in connection with the Siemens butterfly valves listed.

Note When using the actuators in connection with butterfly valves of other manufacture, correct functioning must be ensured by the user, and Siemens will assume no responsibility.

Technical data

		SQL321B25	SQL321B50	SQL321B150	SQL321B270	SQL321B570	SQL321B1400	SQL321B2650	SQL321B6000
		SQL361B25	SQL361B50	SQL361B150	SQL361B270	SQL361B570	SQL361B1400	SQL361B2650	SQL361B6000
Power supply	Operating voltage Voltage tolerance	$\begin{gathered} \text { AC } 220 \mathrm{~V} / 1 \text { phase } \\ +/-10 \% \end{gathered}$							
	Frequency	$50 / 60 \mathrm{~Hz}$							
	Power consumption ${ }^{1)}$	45 VA	45 VA	91 VA	165 VA	194 VA	390 VA	436 VA	670 VA
Signal inputs	Positioning signal	$\begin{aligned} & \text { SQL321...: 2P (SPDT) } \\ & \text { SQL361...: DC 0(2)... } 10 \text { V } 4 \ldots . .20 \mathrm{~mA} \end{aligned}$							
	Parallel operation	For SQL321B.., it is not possible for electrical parallel operation of several actuators. For SQL361B.. electrical parallel operation of several actuators is possible, and the specific quantity of actuator depends on the controller output.							
	Position feedback	SQL321B25..B6000SQL361B25..B50SQL361B150.., B6000			Dual auxiliary switch (built-in) DC 0 (2) ... $10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$, Dual auxiliary switch (built-in) DC 0(2) ... $10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$				
Operating data	Positioning time for 90° at 50 Hz	11 s	22 s	39 s	39 s	47 s	47 s	105 s	143 s
	Angle of rotation	$90^{\circ} \pm 1^{\circ}$ (factory setting)							
	Nominal Torque ${ }^{1)}$	25 Nm	50 Nm	150 Nm	270 Nm	570 Nm	1400 Nm	2650 Nm	6000 Nm
	Switching capacity	AC 250 V , 5 A resistive		AC $250 \mathrm{~V}, 10$ A resistive					
	Heating element (built-in)	$\begin{aligned} & 220 \mathrm{~V} \\ & 2.0 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 220 \mathrm{~V} \\ & 7.5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 220 \mathrm{~V} \\ & 8.5 \mathrm{~W} \end{aligned}$				
	Max. permissible medium temperature	$-10 \ldots 80^{\circ} \mathrm{C}$							
Degree of protection	Housing upright to horizontal	IP67 as per EN 60529							
	Insulation class	Class I as per EN 60730							
Standards	EU conformity (CE)	A5W90000890*							
	RCM conformity	A5W90000886*							
Environmental compatibility	The product environmental declaration CB1E4520en* contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).								
	Flange / shaft connection	EN ISO 5211							
	types to valve (top flange)	F07			F10	F12/F10	F14	F16	F25
Dimension weight	Dimensions	see "Dimensions", page 11, 12							
	Weight	see "Dimensions", page 11, 12							
	Cable glands	$2 \times \mathrm{Pg} 13.5$			$2 \times \mathrm{Pg} 16$				
Materials	Housing base, yoke	Die-cast aluminum alloy						Housing: Die-cast aluminum alloy Gear box: Cast Iron	
	Cover	Die-cast aluminum alloy							

1) These values apply at nominal voltage, ambient temperature of $20^{\circ} \mathrm{C}$ and at nominal running time.

* The documents can be downloaded from http://siemens.com/bt/download.

General ambient conditions

	Operation EN $60721-3-4$	Transport EN $60721-3-2$	Storage EN $60721-3-1$
Environmental conditions	Class 4 K 1	Class 2 K 2	Class 1 K 3
Temperature	$-20 \ldots 65^{\circ} \mathrm{C}$	$-30 \ldots 65^{\circ} \mathrm{C}$	$-5 \ldots 55^{\circ} \mathrm{C}$
Humidity	$15 \ldots 100 \%$ r. h.	$<95 \%$ r. h.	$0 \ldots . .95 \%$ r. h.

SQL321..

	Pin	Terminal no.	Code	Meaning
$\begin{aligned} & \text { 高然 } \\ & \frac{1}{2} \end{aligned}$	Actuator AC 220 V	G	-	Grounding
		1	N	System neutral
		2	L	System potential, AC 220 V
		3	Y14	AC 220 V, control signal (open)
		4	Y12	AC 220 V, control signal (closed)
	Auxiliary signal	A	Q13	Auxiliary switch c2, open
	feedback	B	Q14	Auxiliary switch c2, open
		C	Q23	Auxiliary switch c1, close
		D	Q24	Auxiliary switch c1, close

SQL361B25
SQL361B50

DC $0 \ldots 10 \mathrm{~V}$
$4 . . .20 \mathrm{~mA}$

SQL361B150...

B6000

Accessory
ASC10.21

Pin	Terminal no.	Code	Meaning
Actuator AC 220 V	G	-	Protective earth
	1	N	Neutral
	2	L	System potential, AC 220 V
	3	Y	Positioning signal, DC 0(2)... $10 \mathrm{~V}, 4 . . .20 \mathrm{~mA}$
	4,6	M	Measuring neutral
	5	U	Position feedback, DC 0(2)... $10 \mathrm{~V}, 4 . . .20 \mathrm{~mA}$
Auxiliary signal feedback	A	Q13	Auxiliary switch c2, open
	B	Q14	Auxiliary switch c2, open
	C	Q23	Auxiliary switch c1, close
	D	Q24	Auxiliary switch c1, close

Connection diagrams

SQL321B..

N1
Y1
L 1 phase AC 220 V
N
Q12, Q14
Y12
Y14
c1
c2 N4520V01

Controller
Actuator

Neutral
Controller contacts
Positioning signal (Closed)
Positioning signal (Open)

SQL361B..

N1

L 1 phase AC 220 V

U

Auxiliary dry contact switch, close
Auxiliary dry contact switch, open

Controller
Actuator

Neutral
Positioning signal DC $0(2) \ldots 10 \mathrm{~V}$, 4... 20 mA

Measuring neutral
Position feedback signal DC
$0(2) \ldots 10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$

Product No.	A	E	F	H	\mathbf{G}	$\varnothing 1$	J	Weight碓	EN ISO 5211
SQL321B25	179	57	114	20	11	70	4-M8	3.6	F07
SQL361B25	209	57	114	20	11	70	4-M8	3.8	F07
SQL321B50	179	57	114	20	17	70	4-M8	3.6	F07
SQL361B50	209	57	114	20	17	70	4-M8	3.8	F07

Product No.	A	B	C	D	E	F	G	H	$\varnothing 1$	J	Weight [kg]	EN ISO 5211
SQL321B150 SQL361B150	250	125	77	216	120	240	17	35	70	4-M8	11	F07
$\begin{aligned} & \text { SQL321B270 } \\ & \text { SQL361B270 } \end{aligned}$	307	187	105	260	145	280	22	55	102	4-M10	22	F10
$\begin{aligned} & \text { SQL321B570 } \\ & \text { SQL361B570 } \end{aligned}$	307	187	105	260	145	280	27	55	$\begin{aligned} & 125 \\ & 102 \end{aligned}$	$\begin{aligned} & \text { 4-M12 } \\ & \text { 4-M10 } \end{aligned}$	22	F12/F10
$\begin{aligned} & \text { SQL321B1400 } \\ & \text { SQL361B1400 } \end{aligned}$	310	242	119	293	161	346	36	65	140	4-M16	36	F14

Product No.	A	B	C	D	E	F	G	H	Ø I	J	Weight $[k g]$	EN ISO 5211
SQL321B2650 SQL361B2650	53	18	242	295	308	186	46	85	165	$4-\mathrm{M} 20$	76	F16

A $\geqslant 200 \mathrm{~mm}$: For mounting, connection, operation, service, etc.

Revision numbers

Product No.	Valid from Rev. No.	Product No.	Valid from Rev. No.
SQL321B25	..D	SQL361B25	..A
SQL321B50	..E	SQL361B50	..E
SQL321B150	..D	SQL361B150	..D
SQL321B270	..D	SQL361B270	..D
SQL321B570	..D	SQL361B570	..D
SQL321B1400	..D	SQL361B1400	..D
SQL321B2650	..D	SQL361B2650	..D
SQL321B6000	..A	SQL361B6000	..A

