

Acvatix™

PICV PN16/PN25 with flanged connections

PN16: VPF43../VPF44.., PN25: VPF53../VPF54..

VPF44../VPF54..

VPF43../VPF53..

Pressure Independent Control Valves (PICV)

- With integrated pressure differential controller
- Valve body made of gray cast iron GJL-250 or nodular cast iron GJS-400
- Available in the range from DN 50 to 200
- Volumetric flow 15 to 280 m³/h nominal, with presetting
- Equipped with pressure test points P/T
- Can be equipped with SAX..P.., SAV..P.., SQV..P.., SBX..P or SBV..P electromotoric actuators

Use

- For use in heating, ventilation and air conditioning systems, district heating, as a control valve
- For closed circuits

Type summary

	Product number	Stock number	DN	H ₁₀₀ [mm]	V _{min} [m³/h]	V ₁₀₀ [m ³ /h]	∆P _{min} [kPa]					
Standard flow rate	VPF44.50F15	S55266-V174	50	20	3.7	14.3	See "Standard flow rate" in					
	VPF54.50F15	S55266-V152					Equipment combinations [▶ 4]					
	VPF44.65F25	S55266-V176	65		4.5	24.4						
	VPF54.65F25	S55266-V154										
	VPF44.80F35	S55266-V178	80		6.8	35.7						
	VPF54.80F35	S55266-V156										
	VPF44.100F70	S55266-V142	100	40	12.2	69.6						
	VPF54.100F70	S55266-V158										
	VPF44.125F110	S55266-V144	125		15	112						
	VPF54.125F110	S55266-V180										
	VPF44.150F150	S55266-V146	150	43	19	150						
	VPF54.150F150	S55266-V182										
	VPF43.200F210	S55266-V148	200		95	210						
	VPF53.200F210	S55266-V150										
High flow rate	VPF44.50F25	S55266-V175	50	20	5.7	24.6	See "High flow rate" in					
	VPF54.50F25	S55266-V153					Equipment combinations [▶ 4]					
	VPF44.65F35	S55266-V177	65		6.4	37.7						
	VPF54.65F35	S55266-V155										
	VPF44.80F45	S55266-V179	80		8.5	49.0						
	VPF54.80F45	S55266-V157										
	VPF44.100F90	S55266-V143	100	40	14.8	90.9						
	VPF54.100F90	S55266-V159										
	VPF44.125F135	S55266-V145	125		18	132						
	VPF54.125F135	S55266-V181										
	VPF44.150F200	S55266-V147	150	43	26	208						
	VPF54.150F200	S55266-V183	200									
	VPF43.200F280	S55266-V149			130	280						
	VPF53.200F280	S55266-V151										

Notes:

When valve installed with stem horizontally, the flow rate will reduce by about 5 %.

DN = Nominal size

H₁₀₀= Nominal stroke

V₁₀₀ = Volumetric flow through fully open valve (H₁₀₀)

2

 V_{min} = Smallest pre-settable volumetric flow through fully open valve (H₁₀₀) ΔP_{min} = Minimum differential pressure required across the valve's control path, so that the differential pressure regulator works reliably

Ordering

PICV valve, actuator must be ordered separately.

When ordering please specify the quantity, product name and type code. Example:

Product number	Stock number	Designation
VPF44.65F25	S55266-V176	PICV PN 16 with flanged connections

Delivery

- PICVs, actuators and accessories are packed and supplied separately.
- The valves are supplied without counter-flanges and without flange gaskets.

Equipment combinations

	Valves			Actuators												
				SAX	(P	SQ\	/P	SAV	/P	SB>	(P	SBV	/P			
		DN	H100 [mm]	∆p _{max} [kPa]	∆p₅ [kPa]	∆p _{max} [kPa]	∆p _s [kPa]	∆p _{max} [kPa]	∆p₅ [kPa]	∆p _{max} [kPa]	∆p₅ [kPa]	∆p _{max} [kPa]	∆p₅ [kPa]			
Standard flow rate	VPF44.50F15 VPF54.50F15	50	20	600	700	600	700	-	-	600	700	-	-			
	VPF44.65F25 VPF54.65F25	65	65													
	VPF44.80F35 VPF54.80F35	80														
	VPF44.100F70 VPF54.100F70	100	40	-	-			600	700	-	-	600	700			
	VPF44.125F110 VPF54.125F110	125					600		600				600			
	VPF44.150F150 VPF54.150F150	150	43													
	VPF43.200F210 VPF53.200F210	200														
High flow rate	VPF44.50F25 VPF54.50F25	50	20	600	700	600	700	-	-	600	700	-	-			
	VPF44.65F35 VPF54.65F35	65														
	VPF44.80F45 VPF54.80F45	80														
	VPF44.100F90 VPF54.100F90	100	40	-	-			600	700	-	-	600	700			
	VPF44.125F135 VPF54.125F135	125					600		600				600			
	VPF44.150F200 VPF54.150F200	150	43													
	VPF43.200F280 VPF53.200F280	200														

Note:

H₁₀₀ = Nominal stroke

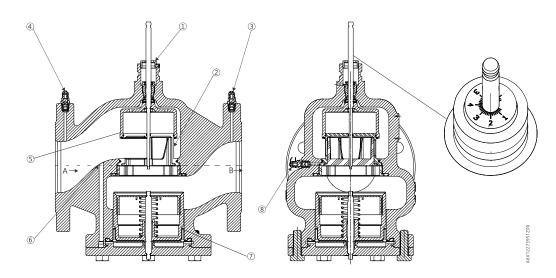
 Δp_{max} = Maximum permissible differential pressure across valve's control path, valid for the entire actuating range of the motorized valve

 Δp_s = Maximum permissible differential pressure at which the motorized valve will close securely against the pressure (close off pressure)

Actuator overview

Туре	Stock no.	Stroke	Pos. force	Operating voltage	Positioning signal	Spring return time	Spring return directi on	Positio ning time	LED	Manual adjuster	Extra functions
SAX31P03	S55150-A118	20 mm	500 N	AC 230 V	3-position	-	-	30 s	-	Push and	1)
SAX61P03	S55150-A114			AC/DC 24 V	DC 010 V DC 420 mA 01000 Ω	-	-	30 s	V	fix	2) 3)
SAX81P03	S55150-A116				3-position	-	-	30 s	-	-	1)
SQV91P30	S55150-A130	20 mm	1100 N	AC/DC 24 V	3-position	30 s		< 120	\checkmark	Turn and	1) 6)
SQV91P40	S55150-A131	40 mm		AC 230 V ⁴⁾	DC 010 V DC 420 mA		open or push to close ⁵⁾	S		fix	
SAV31P00	S55150-A121	40 mm	1100 N	AC 230 V	3-position	-	-	120 s	-	Push and	1)
SAV61P00	S55150-A119	-		AC/DC 24 V	DC 010 V DC 420 mA 01000 Ω				V	fix	2) 3)
SAV81P00	S55150-A120				3-position				-		1)
SAV61P00/ MO ⁷⁾	S55150-A144	40 mm	1100 N	AC/DC 24 V	Modbus RTU	-	-	120 s	s √ Push and fix		6)
SAX61P03/ MO ⁸⁾	S55150-A143	20 mm	500 N	AC/DC 24 V	Modbus RTU	-	-	30 s	\checkmark	Push and fix	3) 6)
SBX31P	S55160-A110	20 mm	700 N	AC 230 V	3-position	-	-	120 s	-	Turnkey	9)
SBX61P	S55160-A111			AC/DC 24 V	DC 010 V	-	-				
SBX81P	S55160-A112			3-position	-	-					
SBV31P	S55160-A113	40 mm	1600 N	AC 230 V	3-position	-	-	180 s	-	Turnkey	9)
SBV61P	S55160-A114	1	A	AC/DC 24 V	DC 010 V	-	-			,	
SBV81P	S55160-A115]			3-position	-	-				

¹⁾ Optional accessories: Auxiliary switch, potentiometer


- $^{\rm 2)}$ Position feedback, forced control, change of flow characteristic
- ³⁾ Optional accessories: Auxiliary switch, sequence control, acting direction
- ⁴⁾ Voltage adapter required, order separately
- ⁵⁾ Selectable
- ⁶⁾ Position feedback, forced control
- 7) UL certified
- ⁸⁾ UL certified and CE conform
- ⁹⁾ Optional accessories: 4...20 mA control signal with AZX420 function module

Accessories

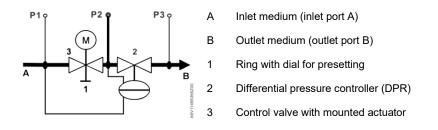
Product no.	Order number	Designation	Description
ALE10	ALE10		 Electronic manometer excluding measuring lines and measuring tips. Measuring range 0 700 kPa. A differential pressure of more than 1000 kPa will destroy the pressure sensor. For measuring the differential pressure between p₁, and P₂/p₃ of the PICVs (see diagram under "Functional principle"). Functions of the manometer: Start/stop Automatic zero position Backlit display Display: Out → outside the measuring range Holding function
ALE11	ALE11	Q	Measuring lines and straight measuring tips for use with Siemens PICVs. Equipped with G ¼" connection with 2 x 40 mm needles.
ALP45	ALP45		Spare nipples P/T port (set of 2). Set contains 1 piece each with a red and blue ribbon. Port: External threads G 1/8" to ISO 228 Connection to valve body: G 1/4" to ISO 228, including O-ring Length: 40 mm
ALP46 (only for p ₁ , p ₃)	S55264-V115	۶	Blanking plugs for P/T ports Connection to valve body: G ¼" to ISO 228, inclusive O-ring
ALP47 (only for p_1 , p_3)	S55264-V116	<i>Ş</i> >	Drain ball valve inclusive O-ring Port: External threads G ½" to ISO 228 Connection to valve body: G ¼" to ISO 228, inclusive O-ring Length: 48 mm
ALP48 (only for p_1 , p_3)	S55264-V117	J	Combined P/T port and drain ball valve Port: External threads G 1/8" to ISO 228 Connection to valve body: G 1/4" to ISO 228, inclusive O-ring Length: 80 mm
ALP49	S55264-V118	11	Long P/T ports (set of 2 pieces) Set contains 1 piece each with a red and blue ribbon. Port: External threads G 1/8" to ISO 228 Connection to valve body: G 1/8" to ISO 228, inclusive O-ring Length: 120 mm

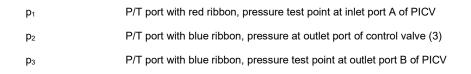
		grease
VPF44.50F15	ALR50F15	S55264-V155
VPF54.50F15		
VPF44.50F25	ALR50F25	S55264-V156
VPF54.50F25		
VPF44.65F25	ALR65F25-LP	S55264-V157
VPF54.65F25	ALR65F25-HP	S55264-V163
VPF44.65F35	ALR65F35-LP	S55264-V158
VPF54.65F35	ALR65F35-HP	S55264-V164
VPF44.80F35	ALR80F35	S55264-V159
VPF54.80F35		
VPF44.80F45	ALR80F45	S55264-V160
VPF54.80F45		
VPF44.100F70	ALR100F70	S55264-V161
VPF54.100F70		
VPF44.100F90	ALR100F90	S55264-V162
VPF54.100F90		

VPF44../VPF54..

1	Ring with dial for presetting
2	Seat with variable presetting opening
3	Pressure test point (P/T) at outlet port B, blue ribbon, p_3
4	Pressure test point (P/T) at inlet port A, red ribbon, p ₁
5	Control valve
6	Aperture for the differential pressure regulator is linked with inlet port A
7	Differential pressure controller - DPR
8	Pressure test point (P/T) at outlet of control valve, blue ribbon, p_2
A	Inlet port A
В	Outlet port B

VPF43../VPF53..




1	Ring with dial for presetting
2	Aperture for the differential pressure controller is linked with outlet port B
3	Differential pressure controller
4	Plug with variable presetting opening
5	Control valve
6	Pressure test point (P/T) at outlet port B, blue ribbon, p_3
7	Pressure test point (P/T) at inlet port A, red ribbon, p1
А	Inlet port A
В	Outlet port B

The PICVs VPF43../VPF44../VPF53../VPF54.. combine three functions:

- a control valve for controlling the volumetric flow
- an adjustable mechanism with a dial for a pre-settable maximum volumetric flow
- a DPR for balancing pressure fluctuations in the hydraulic system respectively across the control valve

The mechanical series-connected differential pressure controller keeps the differential pressure $(p_1 - p_2)$ constant across the control valve and thus the volumetric flow too. The desired maximum volumetric flow V100 can be preset with the adjusting mechanism. The controller (not shown) and the actuator regulate the volumetric flow and consequently the desired temperature in buildings, rooms or zones.

Medium flow

The medium entering the PICV (inlet port A) first passes through the control valve (3) with a linear characteristic and a stroke of 20 mm (DN 50...80) respectively 40 mm (DN 100...125) and 43 mm (DN 150...200). The actuator (not shown here) opens or closes accurately the control valve. Then, the medium flows through the variable presetting opening which is connected to the ring with dial (1) for presetting the desired maximum volumetric flow V₁₀₀.

Before leaving the PICV (outlet port B), the medium passes through a built-in mechanical differential pressure controller. This differential pressure controller is the heart of the PICV and ensures that the selected volumetric flow is maintained across the whole working range and independent of the inlet pressure P₁.

Pressure test points

The PICV VPF44../VPF54.. are equipped with three pressure test points (p_1, p_3, p_2) for measuring and monitoring the differential pressure across the control valve and PICV during commissioning or for analysis during operation. The PICV VPF43../VPF53.. are equipped with two pressure test points (p_1, p_3) for measuring and monitoring the differential pressure across the valve during commissioning or operation. For that purpose, the electronic manometer ALE10 can be used.

Manual control

Only possible with mounted actuator.

Advantages

The advantages of PICVs are that:

- Once the flow limiter (presetting) is set to the desired nominal flow, the hydraulic circuit is self-balanced, even when changes to the system are made, such as additions.
- For any heat or cold demand the PICV with mounted actuator can be set to the desired volumetric flow and will be relatively constant regardless of pressure fluctuations in the system.

Constant flow regardless of pressure changes in the system reduces hydraulic interdependence between hydraulic groups and leads to a more stable control.

Notes: PICV can't be used as flow limiting valve without an actuator mounted on top.

Engineering Example

$$\dot{V} = \frac{Q[kW] \cdot 1000}{1.\ 163 \cdot \Delta T[K]} \left[\frac{I}{h}\right]$$

Basis of design

- 1. Determine heat/cold demand Q [kW]
- 2. Determine temperature spread ΔT [K]
- 3. Calculate volumetric flow
- 4. Select suitable PICV VPF43../VPF44../VPF53../VPF54..
- 5. Determine dial setting using volumetric flow/dial presetting tables, see below.

Example

- 1. Heat demand Q = 150 kW
- 2. Temperature spread ΔT = 6 K
- 3. Volumetric flow

 $\dot{V} = \frac{150 \text{ kW} \cdot 1000}{1.163 \cdot 6 \text{ K}} = 21'654 \text{ l/h} = 21.6 \text{ m}^3/\text{h}$

Hint: You can also determine the volumetric flow using the valve slide rule.

4. PN class: PN 16

```
    Select PICV VPF44., PN 16
Ideally, PICVs should be selected such that they operate at about 80% of their maximum
flow, enabling them to deliver spare capacity, if required.
Selections:
VPF44.65F25 Δp<sub>min</sub> = 25 kPa
VPF44.65F35 Δp<sub>min</sub> = 40.5 kPa
    Determine dial setting using volumetric flow/dial presetting tables:
```

VPF44.65F25 Volumetric flow 21.6 m³/h Dial setting 3.7 VPF44.65F35 Volumetric flow 21.6 m³/h Dial setting 2.5

Volumetric flow/dial presetting

Tables to determine the dial setting for a desired volumetric flow. Δp_{min} [kPa] based on volumetric flow; interpolate missing values.

	Presetting range linear to VDI/VDE 2173
-	Presetting range not permitted

Standard flow rate

VPF44.50F	15/VF	PF54.	50F15	i, 15 r	n³/h r	nomin	al														
∨̈ [m³/h]	-	-	-	3.7	4.2	4.9	5.6	6.3	7.0	7.7	8.4	9.2	10.0	11.0	11.9	12.6	13.2	13.5	13.8	14.1	14.3
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				13	14	15	16	16	17	18	18	19	20	21	21	22	23	23	24	25	25

VPF44.65F	25/VP	F54.6	5F25	, 25 m	ո³/h n	omin	al														
♡ [m³/h]	-	-	-	4.5	5.3	6.2	7.1	7.9	8.7	9.9	11.1	12.5	13.8	15.3	16.7	17.9	19.1	20.4	21.6	23.0	24.4
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				28	29	29	29	29	30	30	30	30	31	31	31	31	32	32	32	32	32

VPF44.80F3	/PF44.80F35/VPF54.80F35, 35 m ³ /h nominal																				
∨ [m³/h]	-	-	-	6.8	8.4	9.6	10.7	12.2	13.7	15.5	17.3	19.4	21.4	23.3	25.1	27.2	29.3	31.2	33.2	34.5	35.7
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				18	19	19	19	19	20	20	20	20	21	21	21	21	22	22	22	22	22

VPF44.100F	70/VF	PF54.	100F	70, 70	m³/h	nomiı	nal														
՝ [m³/h]	-	-	-	12.2	14.8	17.3	19.8	22.5	25.2	29.1	33.0	37.1	41.2	46.2	51.1	56.3	61.5	64.3	67.2	68.4	69.6
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max
Δp _{min} [kPa]				18	19	20	21	22	23	24	25	26	26	27	28	29	30	31	32	33	33
VPF44.125	VPF44.125F110/VPF54.125F110, 110 m³/h nominal																				
∨ [m³/h]	-	-	-	15	19	22	26	31	36	40	45	52	57	65	73	83	89	96	103	109	112
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				20	20	22	22	23	24	24	25	25	26	26	26	28	28	28	28	29	30

VPF44.150	/PF44.150F150/VPF54.150F150, 150 m ³ /h nominal																				
∨ [m³/h]	-	-	-	19	23	28	33	39	45	51	58	66	75	84	94	104	111	120	129	139	150
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				17	17	18	18	19	20	20	22	22	23	23	24	25	26	28	28	29	30

VPF43.200	F210/\	/PF5	3.200	F210,	210 m	ı³/h n	omina	al													
∨ [m³/h]	-	-	-	-	-	95	100	105	112	118	124	132	140	149	157	165	173	182	192	200	210
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]						11	12	12	14	15	16	17	19	21	22	24	26	27	29	30	32

High flow rate

					_																
VPF44.50F	25/VP	F54.5	0F25	, 25 n	n³/h n	omina	al														
∨ [m³/h]	-	-	-	5.7	6.9	7.8	8.8	9.9	11.1	12.3	13.5	15.0	16.5	18.1	19.7	21.0	22.2	22.9	23.5	24.0	24.6
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				30	32	33	35	36	38	39	41	42	44	45	47	48	50	51	53	54	55
VPF44.65F	35/VP	F54.6	5F35	i, 35 n	n³/h n	omina	al														
∨ [m³/h]	-	-	-	6.4	7.8	8.8	10.1	11.2	12.3	14.2	16.1	18.1	20.2	22.4	24.6	26.5	28.5	30.6	32.7	35.2	37.7
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				30	32	33	34	35	36	38	39	40	41	42	43	45	46	47	48	49	50
VPF44.80F	45/\/D	E54 9	0545	. 45 r	n ³ /h n	omina															
∨ [m ³ /h]	43/ V F	- 54.0	-	8.5	10.5	12.2	13.9	16.0	18.0	20.2	22.4	24.7	27.0	30.2	33.4	36.5	39.6	42.5	45.4	47.2	49.0
Dial	- Min.	- 0.2	- 0.4		0.8	12.2	1.2	1.4	1.6	1.8	22.4	2.2	27.0	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]	IVIIII.	0.2	0.4		24	25	26	27	28	29	2	31	32	33	34	35	36	37	38	39	40
					21	20	20	21	20	20	00	01	02	00	04	00	00	01	00	00	
VPF44.100	F90/V	PF54	100F	90, 9	0 m³/h	nom	inal														
∨ [m³/h]	-	-	-	14.8	18.2	21.3	24.4	27.6	30.8	35.4	39.9	43.7	47.4	55.7	64.0	70.8	77.5	82.3	87.1	89.0	90.9
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
∆p _{min} [kPa]				20	22	23	25	26	28	29	31	32	34	35	37	38	40	41	43	44	45
VPF44.125	F135/\	/PF5	4.125	F135,	, 135 r	n³/h n	omina	al													
∨ [m³/h]	-	-	-	18	23	25	30	36	41	45	51	59	65	74	85	94	100	109	120	126	132
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				20	22	24	25	26	28	29	31	32	34	35	37	38	40	42	42	43	45
VPF44.150	F200/\	/PF5	4.150	F200	. 200 r	n³/h n	omina	91													
∨ [m³/h]		_	_	26	34	38	45	53	63	69	79	91	102	116	131	143	153	167	183	194	208
Dial	Min.		0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
Δp _{min} [kPa]				20	20	22	24	24	26	28	32	36	36	38	40	42	44	45	48	48	50
	1	I	I		1		1				1				1	1	1	1	1	1	1
VPF43.200	F280/\	/PF5	3.200	F280,	, 280 r		omina														
∨ [m³/h]	-	-	-	-	-	130	137	145	153	162	170	180	189	199	209	220	232	243	256	267	280
Dial	Min.	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3	3.2	3.4	3.6	3.8	Max.
			1	1	1	31	32	33	35	38	41	45	49	53	57	61	65	69	73	75	78

Product documentation

Торіс	Title	Document ID
Mounting and installation	VPF43/VPF44/ VPF53/VPF54 Mounting instructions	A6V12190279
Product environmental compatibility	VPF44./VPF54 The product environmental declaration A5W00159028A contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).	A5W00159028A
	VPF43./VPF53 The product environmental declaration CE1E4315en contains data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).	CE1E4315en
EU Conformity (CE)	VPF44/ VPF54	A5W00159722A
	VPF43/ VPF53	CE1T4315xx

Related documents such as the environmental declarations, declarations of conformity, etc., can be downloaded from the following Internet address:

www.siemens.com/bt/download

Notes Safety

 National safety regulations Failure to comply with national safety regulations may result in personal injury and property damage. Observe national provisions and comply with the appropriate safety regulations.

Engineering

Valve and actuator combination

Valve	Symbols / Direction of	Flow in control	Valve stem				
	flow	mode	Stem retracts	Stem extends			
PICV VPF44/54		Variable	Valve closes	Valve opens			
PICV VPF43/53	4315203						

Valve and actuator combination

SAX61P/SAV61P SQV91P	Actuator set to Direct acting	Actuator set to Reverse acting
V 100 % 0 % 0 V 4 mA 20 mA 0 Ω 1000 Ω	Positioning signal Y: DC 010 Positioning signal Z: 01000	
Y, Z	Positioning signal	
V	Volumetric flow	
	Acting direction: Direct	
	Acting direction: Reverse	

SAX61P/SAV61P SQV91P	Actuator	VPF PICV	Actuator and VPF PICV combination
Log	H H H H H H H H H H H H H H H H H H H		V V
Lin	H ₁₀₀ H ₀ H ₀ H ₀ H ₀ H ₀ H ₀ H ₀ H		V ₁₀₀ V ₁₀₀ V ₀ V ₀ V ₀ V ₀ V ₀ V ₀ V ₁₀ V ₁
Y, Z	Positioning signal		
н	Stroke		
V	Volumetric flow		
	Acting direction: Direct	t	
	Acting direction: Rever	rse	

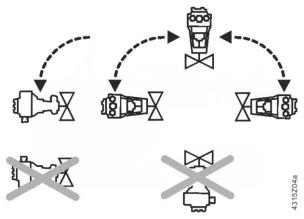
SB61P	Actuator	VPF PICV	Actuator and VPF PICV combination
	H H H H H H H H H H H H H H H H H H H		V V
Y, Z	Positioning signal		
Н	Stroke		
v	Volumetric flow		

A WARNING

The direction of flow indicated (arrow on the valve body) is mandatory! The valves should preferably be mounted in the return pipe where temperatures are lower (for heating circuits), and where the sealing gland is less affected by strain. Valve's factory default position (without actuator) = CLOSED.

Symbol

Symbol used in catalogs and application descriptions	Symbol used in diagrams
4315205	There are no standard symbols for PICVs in diagrams

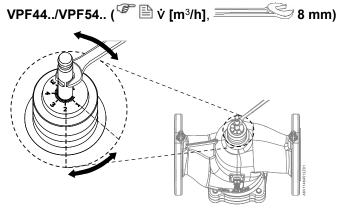

Recommendation

- A strainer or dirt trap should be fitted upstream of the valve to enhance reliability and service life.
- Remove dirt, welding beads etc. from valves and pipes.
- Do not insulate the actuator bracket, as air circulation must be ensured!
- If flow measurement section is used (VPF44../VPF54.. only), make sure the flow measuring device is installed in a low turbulence area. In general, use the 5 × DN / 10 × DN rule, whenever possible and maintain a distance of more than 10D from the pump.

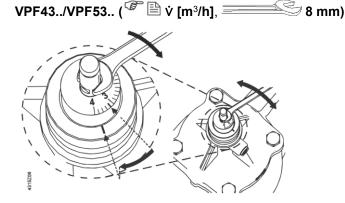
Mounting

• PICV and actuator can easily be assembled on site. Neither special tools nor adjustments, besides flow rate presetting are required.

• The valve is supplied with Mounting Instructions A6V11464512. **Orientation**

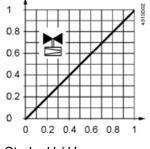

Direction flow

Pay attention to the valve's flow direction symbol during mounting.


Presetting

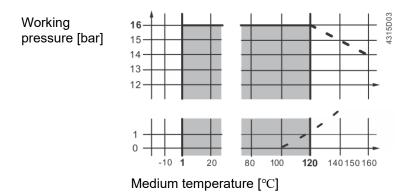
It is recommended to mount the actuator before the presetting is made.

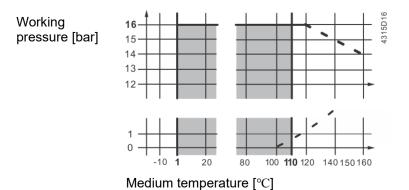
- 1. Mount actuator and fix valve neck coupling
- 2. Mount valve stem coupling and tighten slightly
- 3. Make presetting according to table under "Volumetric flow / dia presetting". Do NOT adjust presetting to a dial reading lower than "0.6".
- 4. Tighten stem coupling



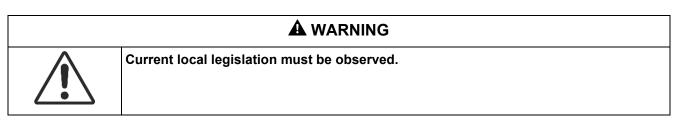
VPF44../VPF54.. has a symmetric pre-setting scale for easy commissioning. Identical presettings positions give identical flow rate.

Valve characteristic


Volumetric flow V / V_{100}


Stroke H / H₁₀₀

18

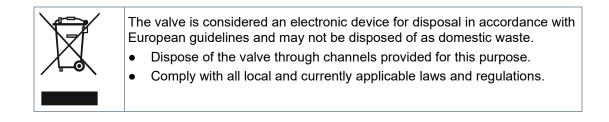

Working pressure and medium temperature Medium temperature [°C] for VPF44../VPF54..

Medium temperature [°C] for VPF43../VPF53..

Working pressure and medium temperature staged as per ISO 7005.

Commissioning

	NOTICE
!	 Consequences The valves must be commissioned with the actuator correctly fitted. Strong pressure impacts can damage closed PICVs. The valves must be open when flushing or pressure testing the system. Strong pressure impacts can damage closed PICVs. Differential pressure Pmax across the valve's control path is not allowed to exceed 600 kPa. Valve's factory default position (without actuator) = CLOSED.


All VPF.. PICVs are maintenance-free. Maintenance for VPF44../VPF54.. allows easy exchange of the differential pressure controller (DPR).

Â	 When performing service work on the valve or actuator: Switch off the pump and disconnect power supply. Close the shut-off valves in the piping network. Fully reduce pressure in the piping network and allow the pipes to cool down completely. 								
	Remove the electrical connections only if necessary.								

Sealing gland

The stem sealing gland cannot be exchanged. In case of leakage the whole valve must be replaced.

Disposal

Warranty

Technical data on specific applications are valid only together with Siemens products listed under "Equipment combinations". Siemens rejects any and all warranties in the event that third-party products are used.

Functional data								
PN class	PN 16 / PN 25 a	PN 16 / PN 25 as per EN 1333						
Permissible operating pressure	1600 kPa (16 ba	1600 kPa (16 bar) / 2500 kPa (25 bar) as per ISO 7628 / EN 1333						
Valve characteristic	Linear as per VD	DI / VDE 2173						
Leakage rate	Class IV (00.0	1 % of volumetric flow V_{100}) to I	EN 1349					
Operating direction		Valve stem retracts (pushed down) to close Valve stem extends (pulled up) to open						
Permissible media	water, water with	Low temperature hot water, medium temperature hot water, chilled water, water with anti-freeze Recommendation: water treatment to VDI 2035						
Medium temperature	PN 16, PN 25	PN 16, PN 25 DN 50150: 1120 °C DN 200 1110 °C						
Rangeability	1:100							
Average flow accuracy	± 10 %	$\begin{array}{c} \pm \mbox{ 10 \% } \\ from \ \Delta p_{min} \ up \ to \ 70 \ kPa \\ from \ \Delta p_{min} \ up \ to \ 105 \ kPa \\ from \ \Delta p_{min} \ up \ to \ 600 \ kPa \end{array}$						
	± 5 %	from 70600 kPa from 105600 kPa	(DN 5080) (DN 100150)					
Nominal stroke	DN 100, 125: 40	DN 50, 65, 80: 20 mm DN 100, 125: 40 mm DN 150, 200: 43 mm						
Low-noise operation		To operate the valve at a low noise level, a differential pressure of 150 kPa should not be exceeded.						

* Tested in clean water conditions, represents the maximum deviation from the average measured flow

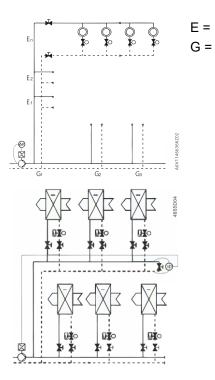
Materials	
Valve body	DN50…100 (PN16): Gray cast iron GJL-250 DN50…100 (PN25), DN125…200 (PN16/PN25): Nodular cast iron GJS-400-18RT
Stem, spring	Stainless steel
Sleeve	Brass
Regulator	Stainless steel
Seals	EPDM

Norms and standards								
VPF44/VPF54 EU Cont	formity (CE)	A5W00159722A						
UKCA (VPF44/VPF54)		A5W00236773A						
EAC conformity		VPF43/VPF44/VPF53/VPF54 Eurasia conformity						
Pressure Equipment Direc	tive	PED 2014/68/EU						
Pressure accessories		Scope: Article 1, section 1 Definitions: Article 2, section 5						
Fluid group 2 (for VPF43/VPF53)	DN 200 ³⁾ (PN 16, PN 25)	Without CE-marking as per article 4, section 3 (sound engineering practice) ¹⁾						
Fluid group 2 (for VPF44/VPF54)	DN 50 (PN 16)	Without CE-marking as per article 4, section 3 (sound engineering practice) ¹⁾						
	DN 65150 (PN 16) DN 50125 (PN 25)	Category I, module A, with CE-marking, as per article 14, section 2						
	DN 150 (PN 25)	Category II, module A2, with CE-marking, as per article 14, section 2, notified body number 0035						
Environmental conformity		The product environmental declaration CE1E4315en ^{2/} (for VPF43/ VPF53), A5W00159028A ^{2/} (for VPF44. VPF54) contain data on environmentally compatible product design and assessments (RoHS compliance, materials composition, packaging, environmental benefit, disposal).						

1. Valves where PS x DN < 1000, do not require special testing and cannot carry the CE label.

2. The documents can be downloaded from http://siemens.com/bt/download.

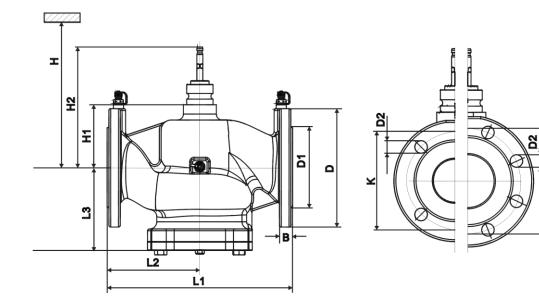
3. Warm water temperature not greater than 110°C, do not require special testing and cannot carry the CE label.


General ambient conditions								
	Operation	Transport	Storage					
Temperature	155 °C	-3065 °C	-1550 °C					
Humidity	595 % r. h.	<95 % r. h.	595 % r. h.					

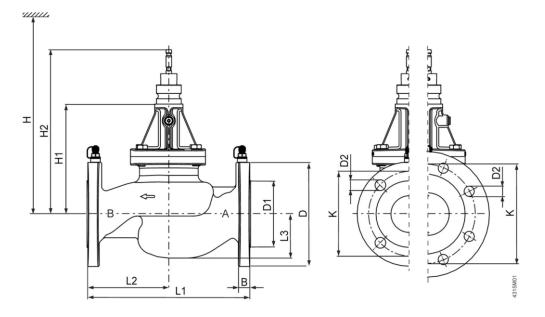
Dimensions/weight								
Dimensions	See Dimensions [▶ 24]							
Weight	See Dimensions [▶ 24]							
Flange connections	ISO 7005-2							
Pressure test points (P / T points)	G ¼ inch (connection) 2 mm x 40 mm (measuring tips)							

PICVs in HVAC systems combined with variable speed pumps provide even higher energy efficiency. When sizing the pump, it must be made certain that the most critical branch or consumer in the system – usually the remotest from the pump – gets enough pressure (pump head). Thus, it is recommended to use a variable speed pump in constant-pressure mode with end-point feedback, to maintain a minimum differential pressure across the critical valve.

Residential buildings


Residential buildings with for example self-contained flat heating systems:

Floor


Group or zone Non-residential buildings Commercial buildings with for example Fan Coil Units or heat exchangers for heating or cooling

Dimensions in mm: VPF44../VPF54..

Product no.	DN	в	ØD	Ø D1	Ø D2	L1	L2	L3	øк	H1	H2	н				Weig ht	
												SAXP	SAVP	SQVP	SBXP	SBVP	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
VPF44	50	17	165	99	19 (4x)	230	115	115	125	102.5	199	545	-	492	608.5	-	15
	65	17	185	118	19 (4x)	290	145	122	145	104	200.5	546	-	493	610	-	19
	80	19	200	132	19 (8x)	310	155	139	160	104.5	201	547	-	494	610.5	-	28
	100	21	220	156	19 (8x)	350	175	174.5	180	169	285.5	-	637	557	-	735	49
	125	19	250	184	19 (8x)	400	200	203	210	203.5	320	-	670	600	-	769.5	77
	150	19	285	211	23 (8x)	480	240	233	240	197	316.5	-	660	590	-	763	110
VPF54	50	16	165	99	19 (4x)	230	115	115	125	102.5	199	545	-	492	608.5	-	15
	65	16	185	118	19 (8x)	290	145	122	145	104	200.5	546	-	493	610	-	20
	80	16	200	132	19 (8x)	310	155	139	160	104.5	201	547	-	494	610.5	-	29
	100	16	235	156	23 (8x)	350	175	174.5	190	169	285.5	-	637	557	-	735	50
	125	19	270	184	28 (8x)	400	200	203	220	203.5	320	-	670	600	-	769.5	79
	150	20	300	211	28 (8x)	480	240	233	250	197	316.5	-	660	590	-	763	115

A6V11464512M01

Product number	DN	в	ØD	Ø D1	Ø D2	L1	L2	L3	øк	H1	H2		н		Weight
number												SAVP	SQVP	SBVP	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
VPF43	200	28	380	266	23 (12x)	600	300	300	295	401	521	870	790	967	175
VPF53	200	28	380	274	28 (12x)	600	300	300	310	401	521	870	790	967	175

Note:

- DN = Nominal size
- H = Total actuator height plus minimum distance to the wall or the ceiling for mounting, connection, operation, maintenance etc.
- H1 = Dimension from the pipe center to install the actuator (upper edge)
- H2 = Valve in the «OPEN» position means that the valve stem is fully extended.

Revision numbers

Product number	Valid from rev. no.	Product number	Valid from rev. no
VPF44.50F15	В	VPF44.50F25	В
VPF44.65F25	В	VPF44.65F35	В
VPF44.80F35	В	VPF44.80F45	В
VPF44.100F70	A	VPF44.100F90	A
VPF44.125F110	A	VPF44.125F135	A
VPF44.150F150	A	VPF44.150F200	A
VPF43.200F210	A	VPF43.200F280	A
VPF54.50F15	A	VPF54.50F25	A
VPF54.65F25	A	VPF54.65F35	A
VPF54.80F35	A	VPF54.80F45	A
VPF54.100F70	A	VPF54.100F90	A
VPF54.125F110	A	VPF54.125F135	A
VPF54.150F150	A	VPF54.150F200	A
VPF43.200F210	A	VPF43.200F280	A

Issued by Siemens Switzerland Ltd Smart Infrastructure Global Headquarters Theilerstrasse 1a CH-6300 Zug +41 58 724 2424 www.siemens.com/buildingtechnologies

© Siemens 2019 Technical specifications and availability subject to change without notice.

Document ID A6V12792883_enAP_b Edition 2023-09-22